-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_pixel_finetuning.py
254 lines (224 loc) · 9.04 KB
/
main_pixel_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import math
import os
import shutil
import time
from logging import getLogger
import apex
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
import torchvision.transforms as transforms
from apex.parallel.LARC import LARC
import src.pseudo_transforms as custom_transforms
import src.resnet as resnet_models
from options import getOption
from src.singlecropdataset import PseudoLabelDataset
from src.utils import (AverageMeter, accuracy, fix_random_seeds,
init_distributed_mode, initialize_exp,
restart_from_checkpoint)
logger = getLogger()
parser = getOption()
def main():
global args
args = parser.parse_args()
init_distributed_mode(args)
fix_random_seeds(args.seed)
logger, training_stats = initialize_exp(args, 'epoch', 'loss')
# build data
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = PseudoLabelDataset(
args.data_path,
custom_transforms.Compose([
custom_transforms.RandomResizedCropSemantic(224),
custom_transforms.RandomHorizontalFlipSemantic(),
custom_transforms.ToTensorSemantic(),
normalize,
]),
pseudo_path=args.pseudo_path,
)
sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset,
sampler=sampler,
batch_size=args.batch_size,
num_workers=args.workers,
pin_memory=True,
drop_last=True)
logger.info('Building data done with {} images loaded.'.format(
len(train_dataset)))
# build model
model = resnet_models.__dict__[args.arch](hidden_mlp=0,
output_dim=0,
nmb_prototypes=0,
num_classes=args.num_classes,
train_mode='finetune')
# loading pretrained weights
checkpoint = torch.load(args.pretrained,
map_location='cpu')['state_dict']
for k in list(checkpoint.keys()):
if k.startswith('module.'):
checkpoint[k[len('module.'):]] = checkpoint[k]
del checkpoint[k]
msg = model.load_state_dict(checkpoint, strict=False)
logger.info("Loaded pretrained weights '{}' with missing {}".format(
args.pretrained, msg.missing_keys))
# synchronize batch norm layers
if args.sync_bn == 'pytorch':
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
elif args.sync_bn == 'apex':
# with apex syncbn we sync bn per group
# because it speeds up computation
# compared to global syncbn
process_group = apex.parallel.create_syncbn_process_group(
args.syncbn_process_group_size)
model = apex.parallel.convert_syncbn_model(model,
process_group=process_group)
# copy model to GPU
model = model.cuda()
if args.rank == 0:
logger.info(model)
logger.info('Building model done.')
# build optimizer
optimizer = torch.optim.SGD(
model.parameters(),
lr=args.base_lr,
momentum=0.9,
weight_decay=args.wd,
)
optimizer = LARC(optimizer=optimizer, trust_coefficient=0.001, clip=False)
warmup_lr_schedule = np.linspace(args.start_warmup, args.base_lr,
len(train_loader) * args.warmup_epochs)
iters = np.arange(len(train_loader) * (args.epochs - args.warmup_epochs))
cosine_lr_schedule = \
np.array([args.final_lr + 0.5 * (args.base_lr - args.final_lr) * (
1 +
math.cos(
math.pi * t /
(len(train_loader) * (args.epochs - args.warmup_epochs))
)
)
for t in iters])
lr_schedule = np.concatenate((warmup_lr_schedule, cosine_lr_schedule))
logger.info('Building optimizer done.')
# init mixed precision
if args.use_fp16:
model, optimizer = apex.amp.initialize(model,
optimizer,
opt_level='O1')
logger.info('Initializing mixed precision done.')
# wrap model
model = nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu_to_work_on])
# optionally resume from a checkpoint
to_restore = {'epoch': 0}
restart_from_checkpoint(
os.path.join(args.dump_path, 'checkpoint.pth.tar'),
run_variables=to_restore,
state_dict=model,
optimizer=optimizer,
amp=apex.amp,
)
start_epoch = to_restore['epoch']
# loss function
criterion = nn.CrossEntropyLoss()
cudnn.benchmark = True
for epoch in range(start_epoch, args.epochs):
# train the network for one epoch
logger.info('============ Starting epoch %i ... ============' % epoch)
# set sampler
train_loader.sampler.set_epoch(epoch)
# train the network
scores = train(train_loader, model, optimizer, criterion, epoch,
lr_schedule)
training_stats.update(scores)
# save checkpoints
if args.rank == 0:
save_dict = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
if args.use_fp16:
save_dict['amp'] = apex.amp.state_dict()
torch.save(
save_dict,
os.path.join(args.dump_path, 'checkpoint.pth.tar'),
)
if epoch % args.checkpoint_freq == 0 or epoch == args.epochs - 1:
shutil.copyfile(
os.path.join(args.dump_path, 'checkpoint.pth.tar'),
os.path.join(args.dump_checkpoints,
'ckp-' + str(epoch) + '.pth'),
)
def train(train_loader, model, optimizer, criterion, epoch, lr_schedule):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
model.train()
end = time.time()
for it, (inputs, labels) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# update learning rate
iteration = epoch * len(train_loader) + it
for param_group in optimizer.param_groups:
param_group['lr'] = lr_schedule[iteration]
# ============ forward step ... ============
inputs = inputs.cuda()
labels = labels.cuda()
labels = labels[:, 1, :, :] * 256 + labels[:, 0, :, :]
labels = labels.long()
output = model(inputs)
labels = F.interpolate(labels.float().unsqueeze(1),
scale_factor=0.5,
mode='nearest').long().squeeze(1)
output = F.interpolate(output,
size=(labels.shape[1], labels.shape[2]),
mode='bilinear')
c = output.shape[1]
loss = criterion(output, labels)
(acc1, ) = accuracy(
output.permute(0, 2, 3, 1).contiguous().view(-1, c),
labels.view(-1))
# ============ backward and optim step ... ============
optimizer.zero_grad()
if args.use_fp16:
with apex.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
# ============ misc ... ============
losses.update(loss.item(), inputs[0].size(0))
acc.update(acc1.item(), inputs[0].size(0))
batch_time.update(time.time() - end)
end = time.time()
if args.rank == 0 and it % 50 == 0:
logger.info('Epoch: [{0}][{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {acc1.val:.2f} ({acc1.avg:.2f})\t'
'Lr: {lr:.4f}'.format(
epoch,
it,
batch_time=batch_time,
data_time=data_time,
loss=losses,
lr=optimizer.optim.param_groups[0]['lr'],
acc1=acc,
))
return (epoch, losses.avg)
if __name__ == '__main__':
main()