-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_cifar_c.py
651 lines (491 loc) · 22.6 KB
/
make_cifar_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
# -*- coding: utf-8 -*-
import os
from PIL import Image
import os.path
import time
import torch
import torchvision.datasets as dset
import torchvision.transforms as trn
import torch.utils.data as data
import numpy as np
import torch.distributions.dirichlet as dirichlet
import random
from torchvision import transforms
from PIL import Image
import pickle
# /////////////// Distortion Helpers ///////////////
import skimage as sk
from skimage.filters import gaussian
from io import BytesIO
from wand.image import Image as WandImage
from wand.api import library as wandlibrary
import wand.color as WandColor
import ctypes
from PIL import Image as PILImage
import cv2
from scipy.ndimage import zoom as scizoom
from scipy.ndimage.interpolation import map_coordinates
import warnings
warnings.simplefilter("ignore", UserWarning)
def save_data(l, path_):
with open(path_, 'wb') as f:
pickle.dump(l, f)
def disk(radius, alias_blur=0.1, dtype=np.float32):
if radius <= 8:
L = np.arange(-8, 8 + 1)
ksize = (3, 3)
else:
L = np.arange(-radius, radius + 1)
ksize = (5, 5)
X, Y = np.meshgrid(L, L)
aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype)
aliased_disk /= np.sum(aliased_disk)
# supersample disk to antialias
return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur)
# Tell Python about the C method
wandlibrary.MagickMotionBlurImage.argtypes = (ctypes.c_void_p, # wand
ctypes.c_double, # radius
ctypes.c_double, # sigma
ctypes.c_double) # angle
# Extend wand.image.Image class to include method signature
class MotionImage(WandImage):
def motion_blur(self, radius=0.0, sigma=0.0, angle=0.0):
wandlibrary.MagickMotionBlurImage(self.wand, radius, sigma, angle)
# modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py
def plasma_fractal(mapsize=32, wibbledecay=3):
"""
Generate a heightmap using diamond-square algorithm.
Return square 2d array, side length 'mapsize', of floats in range 0-255.
'mapsize' must be a power of two.
"""
assert (mapsize & (mapsize - 1) == 0)
maparray = np.empty((mapsize, mapsize), dtype=np.float_)
maparray[0, 0] = 0
stepsize = mapsize
wibble = 100
def wibbledmean(array):
return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape)
def fillsquares():
"""For each square of points stepsize apart,
calculate middle value as mean of points + wibble"""
cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize]
squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0)
squareaccum += np.roll(squareaccum, shift=-1, axis=1)
maparray[stepsize // 2:mapsize:stepsize,
stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum)
def filldiamonds():
"""For each diamond of points stepsize apart,
calculate middle value as mean of points + wibble"""
mapsize = maparray.shape[0]
drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize]
ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize]
ldrsum = drgrid + np.roll(drgrid, 1, axis=0)
lulsum = ulgrid + np.roll(ulgrid, -1, axis=1)
ltsum = ldrsum + lulsum
maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum)
tdrsum = drgrid + np.roll(drgrid, 1, axis=1)
tulsum = ulgrid + np.roll(ulgrid, -1, axis=0)
ttsum = tdrsum + tulsum
maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum)
while stepsize >= 2:
fillsquares()
filldiamonds()
stepsize //= 2
wibble /= wibbledecay
maparray -= maparray.min()
return maparray / maparray.max()
def clipped_zoom(img, zoom_factor):
h = img.shape[0]
# ceil crop height(= crop width)
ch = int(np.ceil(h / zoom_factor))
top = (h - ch) // 2
img = scizoom(img[top:top + ch, top:top + ch], (zoom_factor, zoom_factor, 1), order=1)
# trim off any extra pixels
trim_top = (img.shape[0] - h) // 2
return img[trim_top:trim_top + h, trim_top:trim_top + h]
# /////////////// End Distortion Helpers ///////////////
# /////////////// Distortions ///////////////
def gaussian_noise(x, severity=1):
c = [0.04, 0.06, .08, .09, .10][severity - 1]
x = np.array(x) / 255.
return np.clip(x + np.random.normal(size=x.shape, scale=c), 0, 1) * 255
def shot_noise(x, severity=1):
c = [500, 250, 100, 75, 50][severity - 1]
x = np.array(x) / 255.
return np.clip(np.random.poisson(x * c) / c, 0, 1) * 255
def impulse_noise(x, severity=1):
c = [.01, .02, .03, .05, .07][severity - 1]
x = sk.util.random_noise(np.array(x) / 255., mode='s&p', amount=c)
return np.clip(x, 0, 1) * 255
def speckle_noise(x, severity=1):
c = [.06, .1, .12, .16, .2][severity - 1]
x = np.array(x) / 255.
return np.clip(x + x * np.random.normal(size=x.shape, scale=c), 0, 1) * 255
def gaussian_blur(x, severity=1):
c = [.4, .6, 0.7, .8, 1][severity - 1]
x = gaussian(np.array(x) / 255., sigma=c, multichannel=True)
return np.clip(x, 0, 1) * 255
def glass_blur(x, severity=1):
# sigma, max_delta, iterations
c = [(0.05,1,1), (0.25,1,1), (0.4,1,1), (0.25,1,2), (0.4,1,2)][severity - 1]
x = np.uint8(gaussian(np.array(x) / 255., sigma=c[0], multichannel=True) * 255)
# locally shuffle pixels
for i in range(c[2]):
for h in range(32 - c[1], c[1], -1):
for w in range(32 - c[1], c[1], -1):
dx, dy = np.random.randint(-c[1], c[1], size=(2,))
h_prime, w_prime = h + dy, w + dx
# swap
x[h, w], x[h_prime, w_prime] = x[h_prime, w_prime], x[h, w]
return np.clip(gaussian(x / 255., sigma=c[0], multichannel=True), 0, 1) * 255
def defocus_blur(x, severity=1):
c = [(0.3, 0.4), (0.4, 0.5), (0.5, 0.6), (1, 0.2), (1.5, 0.1)][severity - 1]
x = np.array(x) / 255.
kernel = disk(radius=c[0], alias_blur=c[1])
channels = []
for d in range(3):
channels.append(cv2.filter2D(x[:, :, d], -1, kernel))
channels = np.array(channels).transpose((1, 2, 0)) # 3x32x32 -> 32x32x3
return np.clip(channels, 0, 1) * 255
def motion_blur(x, severity=1):
c = [(6,1), (6,1.5), (6,2), (8,2), (9,2.5)][severity - 1]
output = BytesIO()
x.save(output, format='PNG')
x = MotionImage(blob=output.getvalue())
x.motion_blur(radius=c[0], sigma=c[1], angle=np.random.uniform(-45, 45))
x = cv2.imdecode(np.fromstring(x.make_blob(), np.uint8),
cv2.IMREAD_UNCHANGED)
if x.shape != (32, 32):
return np.clip(x[..., [2, 1, 0]], 0, 255) # BGR to RGB
else: # greyscale to RGB
return np.clip(np.array([x, x, x]).transpose((1, 2, 0)), 0, 255)
def zoom_blur(x, severity=1):
c = [np.arange(1, 1.06, 0.01), np.arange(1, 1.11, 0.01), np.arange(1, 1.16, 0.01),
np.arange(1, 1.21, 0.01), np.arange(1, 1.26, 0.01)][severity - 1]
x = (np.array(x) / 255.).astype(np.float32)
out = np.zeros_like(x)
for zoom_factor in c:
out += clipped_zoom(x, zoom_factor)
x = (x + out) / (len(c) + 1)
return np.clip(x, 0, 1) * 255
def fog(x, severity=1):
c = [(.2,3), (.5,3), (0.75,2.5), (1,2), (1.5,1.75)][severity - 1]
x = np.array(x) / 255.
max_val = x.max()
x += c[0] * plasma_fractal(wibbledecay=c[1])[:32, :32][..., np.newaxis]
return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255
def frost(x, severity=1):
c = [(1, 0.2), (1, 0.3), (0.9, 0.4), (0.85, 0.4), (0.75, 0.45)][severity - 1]
idx = np.random.randint(5)
filename = ['./create_c/frost1.png', './create_c/frost2.png', './create_c/frost3.png', './create_c/frost4.jpg', './create_c/frost5.jpg', './create_c/frost6.jpg'][idx]
frost = cv2.imread(filename)
frost = cv2.resize(frost, (0, 0), fx=0.2, fy=0.2)
# randomly crop and convert to rgb
x_start, y_start = np.random.randint(0, frost.shape[0] - 32), np.random.randint(0, frost.shape[1] - 32)
frost = frost[x_start:x_start + 32, y_start:y_start + 32][..., [2, 1, 0]]
return np.clip(c[0] * np.array(x) + c[1] * frost, 0, 255)
def snow(x, severity=1):
c = [(0.1,0.2,1,0.6,8,3,0.95),
(0.1,0.2,1,0.5,10,4,0.9),
(0.15,0.3,1.75,0.55,10,4,0.9),
(0.25,0.3,2.25,0.6,12,6,0.85),
(0.3,0.3,1.25,0.65,14,12,0.8)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
snow_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome
snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2])
snow_layer[snow_layer < c[3]] = 0
snow_layer = PILImage.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L')
output = BytesIO()
snow_layer.save(output, format='PNG')
snow_layer = MotionImage(blob=output.getvalue())
snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=np.random.uniform(-135, -45))
snow_layer = cv2.imdecode(np.fromstring(snow_layer.make_blob(), np.uint8),
cv2.IMREAD_UNCHANGED) / 255.
snow_layer = snow_layer[..., np.newaxis]
x = c[6] * x + (1 - c[6]) * np.maximum(x, cv2.cvtColor(x, cv2.COLOR_RGB2GRAY).reshape(32, 32, 1) * 1.5 + 0.5)
return np.clip(x + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255
def spatter(x, severity=1):
c = [(0.62,0.1,0.7,0.7,0.5,0),
(0.65,0.1,0.8,0.7,0.5,0),
(0.65,0.3,1,0.69,0.5,0),
(0.65,0.1,0.7,0.69,0.6,1),
(0.65,0.1,0.5,0.68,0.6,1)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
liquid_layer = gaussian(liquid_layer, sigma=c[2])
liquid_layer[liquid_layer < c[3]] = 0
if c[5] == 0:
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
dist = cv2.equalizeHist(dist)
# ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
# ker -= np.mean(ker)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = cv2.filter2D(dist, cv2.CV_8U, ker)
dist = cv2.blur(dist, (3, 3)).astype(np.float32)
m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
m /= np.max(m, axis=(0, 1))
m *= c[4]
# water is pale turqouise
color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1])), axis=2)
color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
else:
m = np.where(liquid_layer > c[3], 1, 0)
m = gaussian(m.astype(np.float32), sigma=c[4])
m[m < 0.8] = 0
# m = np.abs(m) ** (1/c[4])
# mud brown
color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
42 / 255. * np.ones_like(x[..., :1]),
20 / 255. * np.ones_like(x[..., :1])), axis=2)
color *= m[..., np.newaxis]
x *= (1 - m[..., np.newaxis])
return np.clip(x + color, 0, 1) * 255
def contrast(x, severity=1):
c = [.75, .5, .4, .3, 0.15][severity - 1]
x = np.array(x) / 255.
means = np.mean(x, axis=(0, 1), keepdims=True)
return np.clip((x - means) * c + means, 0, 1) * 255
def brightness(x, severity=1):
c = [.05, .1, .15, .2, .3][severity - 1]
x = np.array(x) / 255.
x = sk.color.rgb2hsv(x)
x[:, :, 2] = np.clip(x[:, :, 2] + c, 0, 1)
x = sk.color.hsv2rgb(x)
return np.clip(x, 0, 1) * 255
def saturate(x, severity=1):
c = [(0.3, 0), (0.1, 0), (1.5, 0), (2, 0.1), (2.5, 0.2)][severity - 1]
x = np.array(x) / 255.
x = sk.color.rgb2hsv(x)
x[:, :, 1] = np.clip(x[:, :, 1] * c[0] + c[1], 0, 1)
x = sk.color.hsv2rgb(x)
return np.clip(x, 0, 1) * 255
def jpeg_compression(x, severity=1):
c = [80, 65, 58, 50, 40][severity - 1]
output = BytesIO()
x.save(output, 'JPEG', quality=c)
x = PILImage.open(output)
return x
def pixelate(x, severity=1):
c = [0.95, 0.9, 0.85, 0.75, 0.65][severity - 1]
x = x.resize((int(32 * c), int(32 * c)), PILImage.BOX)
x = x.resize((32, 32), PILImage.BOX)
return x
# mod of https://gist.github.com/erniejunior/601cdf56d2b424757de5
def elastic_transform(image, severity=1):
IMSIZE = 32
c = [(IMSIZE*0, IMSIZE*0, IMSIZE*0.08),
(IMSIZE*0.05, IMSIZE*0.2, IMSIZE*0.07),
(IMSIZE*0.08, IMSIZE*0.06, IMSIZE*0.06),
(IMSIZE*0.1, IMSIZE*0.04, IMSIZE*0.05),
(IMSIZE*0.1, IMSIZE*0.03, IMSIZE*0.03)][severity - 1]
image = np.array(image, dtype=np.float32) / 255.
shape = image.shape
shape_size = shape[:2]
# random affine
center_square = np.float32(shape_size) // 2
square_size = min(shape_size) // 3
pts1 = np.float32([center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size])
pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32)
M = cv2.getAffineTransform(pts1, pts2)
image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)
dx = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
dy = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]
x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255
# /////////////// End Distortions ///////////////
def divide_by_label(dataset, class_num = 10):
index_map = [[] for i in range(class_num)]
len_map = [0 for _ in range(class_num)]
for i in range(len(dataset)):
index_map[dataset[i][1]].append(i)
len_map[dataset[i][1]] += 1
return index_map, len_map
def reweight(q, empty_class):
# sum_q = sum(q)
q[empty_class] = 0
q = q / sum(q)
return q
C = 100
def get_noniid_class_and_labels(original_images, original_labels, N):
M = len(original_labels) // N
clients_images = [[] for _ in range(N)]
clients_labels = [[] for _ in range(N)]
classes_by_index = [[] for _ in range(C)]
classes_by_index_len = [0 for _ in range(C)]
for i, label in enumerate(original_labels):
classes_by_index[label].append(i)
classes_by_index_len[label] += 1
for i in range(N):
p = torch.tensor(classes_by_index_len) / sum(classes_by_index_len)
q = dirichlet.Dirichlet(1.0 * p).sample()
while(len(clients_labels[i]) < M):
sampled_class = torch.multinomial(q, 1)
if classes_by_index_len[sampled_class] == 0:
q = reweight(q, sampled_class)
# print(q)
else:
sampled_index = random.randint(0, classes_by_index_len[sampled_class] - 1)
sampled_original_index = classes_by_index[sampled_class][sampled_index]
clients_images[i].append(original_images[sampled_original_index])
clients_labels[i].append(original_labels[sampled_original_index])
classes_by_index[sampled_class].pop(sampled_index)
classes_by_index_len[sampled_class] -= 1
# clients_labels[i] = torch.tensor(clients_labels[i]
# clients_images[i] = torch.tensor([image for image in clients_images[i]])
return clients_images, clients_labels
import collections
print('Using CIFAR-10 data')
d = collections.OrderedDict()
d['Gaussian Noise'] = gaussian_noise
d['Shot Noise'] = shot_noise
d['Impulse Noise'] = impulse_noise
d['Defocus Blur'] = defocus_blur
d['Glass Blur'] = glass_blur
d['Motion Blur'] = motion_blur
d['Zoom Blur'] = zoom_blur
d['Snow'] = snow
d['Frost'] = frost
d['Fog'] = fog
d['Brightness'] = brightness
d['Contrast'] = contrast
d['Elastic'] = elastic_transform
d['Pixelate'] = pixelate
d['JPEG'] = jpeg_compression
d['Speckle Noise'] = speckle_noise
d['Gaussian Blur'] = gaussian_blur
d['Spatter'] = spatter
d['Saturate'] = saturate
mean = [0.48836562, 0.48134598, 0.4451678]
std = [0.24833508, 0.24547848, 0.26617324]
# train_data = dset.CIFAR10('./data/cifar10-c/origin/', train=True, download=True)
# test_data = dset.CIFAR10('./data/cifar10-c/origin/', train=False, download=True)
train_data = dset.CIFAR100('./data/cifar100-c/origin/', train=True, download=True)
test_data = dset.CIFAR100('./data/cifar100-c/origin/', train=False, download=True)
convert_img = trn.Compose([trn.ToTensor(), trn.ToPILImage()])
corruption_methods = ['Gaussian Noise', 'Shot Noise', 'Impulse Noise', 'Defocus Blur', 'Glass Blur', 'Motion Blur', 'Zoom Blur', 'Snow', 'Frost', 'Fog', 'Brightness', 'Contrast', 'Elastic', 'Pixelate', 'JPEG', 'Speckle Noise', 'Gaussian Blur', 'Spatter', 'Saturate']
corruption_number = len(corruption_methods)
client_number = 300
dirichlet_alpha = 0.5
# Split CIFAR10 to clients by Dirichlet distribution.
print('splitting clients...')
original_images_tr = [X for X, Y in train_data] + [X for X, Y in train_data] + [X for X, Y in train_data]
original_labels_tr = [Y for X, Y in train_data] + [Y for X, Y in train_data] + [Y for X, Y in train_data]
original_images_te = [X for X, Y in test_data]
original_labels_te = [Y for X, Y in test_data]
clients_images, clients_labels = get_noniid_class_and_labels(original_images_tr, original_labels_tr, client_number)
random_clients = [i for i in range(client_number)]
random.shuffle(random_clients)
type_split_N = int(0.2 * client_number)
type_split_N_10 = int(0.1 * client_number)
clients_types = [None] * client_number
# 20% clients will have synthetic corruptions.
print('adding corruptions...')
for i in range(type_split_N):
sampled_client = random_clients[i]
cifar_c, labels = [], []
sampled_corruption = corruption_methods[random.randint(0, corruption_number - 1)]
severity = random.randint(1, 5)
corruption = lambda clean_img: d[sampled_corruption](clean_img, severity)
for img, label in zip(clients_images[sampled_client], clients_labels[sampled_client]):
labels.append(label)
cifar_c.append(np.uint8(corruption(convert_img(img))))
# print(cifar_c[-1].shape)
clients_images[sampled_client] = cifar_c
clients_labels[sampled_client] = labels
clients_types[sampled_client] = 1
# 40% clients will have label changes, totally three types of concepts.
print('changing labels...')
for i in range(type_split_N * 2):
sampled_client = random_clients[i + type_split_N]
cifar_c, labels = [], []
for img, label in zip(clients_images[sampled_client], clients_labels[sampled_client]):
if i % 2 == 0 and label < C:
labels.append(C - 1 - label)
elif i % 2 == 1:
labels.append((label + 1) % C)
else:
labels.append(label)
cifar_c.append(np.uint8(convert_img(img)))
clients_images[sampled_client] = cifar_c
clients_labels[sampled_client] = labels
if i % 2 == 0:
clients_types[sampled_client] = 2
else:
clients_types[sampled_client] = 3
# 10% clients will have both label change and synthetic corruptions.
for i in range(type_split_N_10 * 2):
sampled_client = random_clients[i + 3 * type_split_N]
cifar_c, labels = [], []
sampled_corruption = corruption_methods[random.randint(0, corruption_number - 1)]
severity = random.randint(1, 5)
corruption = lambda clean_img: d[sampled_corruption](clean_img, severity)
for img, label in zip(clients_images[sampled_client], clients_labels[sampled_client]):
if i % 2 == 0 and label < C:
labels.append(C - 1 - label)
elif i % 2 == 1:
labels.append((label + 1) % C)
else:
labels.append(label)
cifar_c.append(np.uint8(corruption(convert_img(img))))
clients_images[sampled_client] = cifar_c
clients_labels[sampled_client] = labels
if i % 2 == 0:
clients_types[sampled_client] = 4
else:
clients_types[sampled_client] = 5
for i in range(client_number - type_split_N * 3 - type_split_N_10 * 2):
sampled_client = random_clients[i + 3 * type_split_N + type_split_N_10 * 2]
cifar_c, labels = [], []
for img, label in zip(clients_images[sampled_client], clients_labels[sampled_client]):
labels.append(label)
cifar_c.append(np.uint8(convert_img(img)))
clients_images[sampled_client] = cifar_c
clients_labels[sampled_client] = labels
clients_types[sampled_client] = 0
print('saving...')
for i in range(client_number):
client = {'images': np.uint8(np.array(clients_images[i])),
'labels': np.uint8(np.array(clients_labels[i])),
'type': clients_types[i]}
# save_data(client,'./data/cifar10-c/{}.pkl'.format(i))
save_data(client,'./data/cifar100-c/{}.pkl'.format(i))
print('saving test...')
test_cifar_c, test_labels_1, test_labels_2, test_labels_3 = [], [], [], []
for img, label in zip(original_images_te, original_labels_te):
test_labels_1.append(label)
if label < C:
test_labels_2.append(C - 1 - label)
else:
test_labels_2.append(label)
test_labels_3.append((label + 1) % C)
test_cifar_c.append(np.uint8(convert_img(img)))
client_1 = {'images': np.uint8(np.array(test_cifar_c)),
'labels': np.uint8(np.array(test_labels_1)),
'type': 0}
client_2 = {'images': np.uint8(np.array(test_cifar_c)),
'labels': np.uint8(np.array(test_labels_2)),
'type': 1}
client_3 = {'images': np.uint8(np.array(test_cifar_c)),
'labels': np.uint8(np.array(test_labels_3)),
'type': 2}
# save_data(client_1,'./data/cifar10-c/test-1.pkl')
# save_data(client_2,'./data/cifar10-c/test-2.pkl')
# save_data(client_3,'./data/cifar10-c/test-3.pkl')
save_data(client_1,'./data/cifar100-c/test-1.pkl')
save_data(client_2,'./data/cifar100-c/test-2.pkl')
save_data(client_3,'./data/cifar100-c/test-3.pkl')
print('Done.')