-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze-voc-data.py
182 lines (165 loc) · 7.08 KB
/
analyze-voc-data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
"""
===============================================================================
Script 'Analyze vocoder data'
===============================================================================
This script cleans and epochs pupillometry data for the vocoder/switch-gap
experiment.
"""
# @author: Eric Larson (larsoner@uw.edu)
# @author: Dan McCloy (drmccloy@uw.edu)
# Created on Thu Sep 17 15:47:08 2015
# License: BSD (3-clause)
from __future__ import print_function
import time
from os import getcwd
from os import path as op
import numpy as np
from scipy.io import loadmat
from pyeparse import read_raw, Epochs
from pyeparse.utils import pupil_kernel
from pupil_helper_functions import (parse_run_indices, get_onset_times,
get_pupil_data_file_list,
extract_event_codes, reorder_epoched_data,
restructure_dims, do_continuous_deconv,
get_gaze_angle)
# flags
downsample = False
run_continuous_deconv = False
n_jobs = 4 # for parallelizing epochs.resample and epochs.deconvolve
# file I/O
data_dir = 'data-vocoder'
work_dir = getcwd()
param_file = op.join(data_dir, 'orderMain.mat')
# params
subjects = ['01', '02', '04', '6', '7', '8', '10', '11',
'12', '13', '14', '55', '96', '97', '98', '99']
n_blocks = 10
t_min, t_max = -0.5, 6.05 # trial epoch extents
deconv_time_pts = None
t_peak = 0.512 # t_max of pupil response kernel estimated at LABS^N; see
# http://dx.doi.org/10.1121/1.4943787 (analysis:ignore)
fs_in = 1000.0
fs_out = 25. # based on characterize-freq-content.py; no appreciable energy
# above 3 Hz in average z-score data or kernel (analysis:ignore)
fs_out = fs_out if downsample else fs_in
# physical details of the eyetracker/screen setup
# (for calculating gaze deviation from fixation cross in degrees)
screenprops = dict(dist_cm=50., width_cm=53., height_cm=29.8125,
width_px=1920, height_px=1080)
# load trial info
bm = loadmat(param_file)
run_inds = bm['runInds']
stim_indices, bands = parse_run_indices(run_inds, n_blocks)
'''
comment from MATLAB (makeSoundFiles.m, line 133) about bigMat:
bigMat = []; % Attn switch (0=no, 1=yes), midGapInd,
initial target (talker index), inital masker (talker index),
cueType, TargMod, MaskMod, Mask Multiplier, Targ pos, Mask pos
'''
big_mat = bm['bigMat']
# construct event dict (mapping between trial parameters and integer IDs)
event_dict = dict()
for sn, sw in zip([100, 200], ['M', 'S']): # maintain / switch
for gn, gs in zip([10, 20], ['200', '600']): # gap duration
for bn, bs in zip([1, 2], ['10', '20']): # num vocoder channels
event_dict.update({'x'.join([sw, gs, bs]): sn + gn + bn})
# init some containers
zscores = list()
zscores_structured = list()
fits = list()
fits_structured = list()
fits_continuous = list()
gaze_angles = list() # relative to fixation cross
# pre-calculate kernel
kernel = pupil_kernel(fs_out, t_max=t_peak, dur=2.0)
for subj in subjects:
t0 = time.time()
raws = list()
events = list()
print('Subject {}...'.format(subj))
# load stim times from MAT file of trial params / behavioral responses
stim_onset_times = get_onset_times(subj, data_dir)
# find files for this subj
fnames = get_pupil_data_file_list(subj, data_dir)
print(' Loading block', end=' ')
for ri, fname in enumerate(fnames):
print(str(ri + 1), end=' ')
raw = read_raw(fname)
assert raw.info['sfreq'] == fs_in
raw.remove_blink_artifacts()
raws.append(raw)
# get the stimulus numbers presented in this block
this_stim_nums = stim_indices[ri]
# extract event codes from eyelink data
event = extract_event_codes(raw, this_stim_nums, stim_onset_times, ri)
# convert event IDs; cf. lines 250-251 of vocExperiment_v2.m
# showing which dimensions correspond to gap & attn
band_num = bands[ri]
gap_num = 10 * big_mat[this_stim_nums, 1]
attn_num = 100 * big_mat[this_stim_nums, 0]
event[:, 1] = band_num + gap_num + attn_num
events.append(event)
print('\n Epoching...')
epochs = Epochs(raws, events, event_dict, t_min, t_max)
if downsample:
print(' Downsampling...')
epochs.resample(fs_out, n_jobs=n_jobs)
# compute gaze angles (in degrees)
angles = get_gaze_angle(epochs, screenprops)
# put zscored pupil size in same order as big_mat
# (sequential by stimulus ID)
zscore = epochs.pupil_zscores()
zscore_ord = reorder_epoched_data(zscore, big_mat, bands, stim_indices,
epochs.n_times)
# now reshape by condition (trial, gap, attn, bands, time)
zscore_struct = restructure_dims(zscore_ord, big_mat, bands,
epochs.n_times)
# init some containers
kernel_fits = list()
kernel_zscores = list()
kernel_fits_continuous = list()
print(' Deconvolving...')
deconv_kwargs = dict(kernel=kernel, n_jobs=n_jobs, acc=1e-3)
if deconv_time_pts is not None:
deconv_kwargs.update(dict(spacing=deconv_time_pts))
fit, time_pts = epochs.deconvolve(**deconv_kwargs)
if deconv_time_pts is None:
deconv_time_pts = time_pts
assert np.array_equal(deconv_time_pts, time_pts)
# put deconvolved pupil size in same order as big_mat
# (sequential by stimulus ID)
fit_ord = reorder_epoched_data(fit, big_mat, bands, stim_indices,
len(deconv_time_pts))
# now reshape by condition (trial, gap, attn, bands, time)
fit_struct = restructure_dims(fit_ord, big_mat, bands,
len(deconv_time_pts))
# continuous deconvolution
if run_continuous_deconv:
(cont_deconv_struct,
cont_deconv_times) = do_continuous_deconv(zscore_struct, kernel,
epochs.times)
fits_continuous.append(cont_deconv_struct)
# append this subject's data to global vars
fits.append(fit)
zscores.append(zscore)
gaze_angles.append(angles)
fits_structured.append(fit_struct)
zscores_structured.append(zscore_struct)
print(' Done: {} sec.'.format(str(round(time.time() - t0, 1))))
# convert to arrays
fits_array = np.array(fits)
fits_struct_array = np.array(fits_structured)
zscores_array = np.array(zscores)
zscores_struct_array = np.array(zscores_structured)
gaze_angles = np.array(gaze_angles)
# params to output for all kernels
out_dict = dict(fs=fs_out, subjects=subjects, t_fit=deconv_time_pts,
kernel=kernel, fits=fits_array, zscores=zscores_array,
fits_struct=fits_struct_array, angles=gaze_angles,
zscores_struct=zscores_struct_array, times=epochs.times)
if run_continuous_deconv:
fits_continuous_array = np.array(fits_continuous)
out_dict.update(dict(cont_fits_struct=fits_continuous_array,
cont_deconv_times=cont_deconv_times))
np.savez_compressed(op.join(work_dir, 'voc_data.npz'), **out_dict)