-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathantlr.py
1037 lines (912 loc) · 50.5 KB
/
antlr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
from torch.autograd import Variable, Function
from torch.nn import init
import torch.optim.sgd
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import math
import gc
class ListSNNMulti(nn.Module):
"""simple SNN model without SNNCell"""
def __init__(self, model_config):
super(ListSNNMulti, self).__init__()
print("SNNmodel_parallel instantiated")
if hasattr(model_config, '__dict__'):
self.__dict__.update(model_config.__dict__)
else:
self.__dict__.update(model_config)
if not self.multi_model:
assert self.num_models == 1
self._init_kernels()
self._init_layers()
def _init_kernels(self):
assert self.target_type == 'train' or self.target_type == 'count' or self.target_type == 'latency', "target type should be either \'train\' or \'count\', or \'latency\'"
if self.target_type == 'train' or self.target_type == 'count':
if self.target_type == 'train':
# self.alpha_exp = 0.9
self.alpha_extend = 200
elif self.target_type == 'count':
self.alpha_exp = 1.0
self.alpha_extend = 0
kernel = torch.pow(self.alpha_exp, torch.arange(min(self.time_length, 1000)).float())
kernel = kernel[kernel > 1e-06].view(1, 1, -1)
kernel_shifted_front = torch.cat((kernel, torch.zeros(1,1,2)), 2)
kernel_shifted_back = torch.cat((torch.zeros(1,1,2), kernel), 2)
kernel_prime = (kernel_shifted_front - kernel_shifted_back) / 2
self.alpha_kernel = kernel
self.alpha_kernel_prime = kernel_prime
# For calculating double-exponential kernel, we calculate each
# timestep's synaptic current (exponentially decays toward future) and
# accumulate the decayed effect (exponentially decays toward past) of
# those synaptic currents to the current timestep.
epsilon = torch.zeros(self.time_length)
# epsilon = torch.zeros(1000)
for t in range(epsilon.numel()):
current_trace = torch.pow(self.alpha_i, torch.arange(t+1).float())
trace_weight = torch.pow(self.alpha_v, torch.arange(t, -1, -1).float())
epsilon[t] = (current_trace * trace_weight).sum()
# epsilon = epsilon[epsilon.abs() > 1e-06]
if self.beta_auto:
self.beta_i = 1.0
self.beta_v = 1.0 / epsilon.max()
self.beta_bias = 1.0 / epsilon.max()
print(f'calculated beta_v : {self.beta_v}')
print(f'calculated beta_bias : {self.beta_bias}')
epsilon *= self.beta_i * self.beta_v
else:
epsilon *= self.beta_i * self.beta_v
epsilon_shifted_front = torch.cat((epsilon, torch.zeros(2)))
epsilon_shifted_back = torch.cat((torch.zeros(2), epsilon))
epsilon_prime = (epsilon_shifted_front - epsilon_shifted_back)/2
self.epsilon = epsilon
self.epsilon_prime = epsilon_prime
return
def _init_layers(self):
self.num_layer = np.size(self.network_size) - 1
self.state_v_bs = list()
self.layers = list()
self.fmap_shape_list = list()
self.fmap_type_list = list()
if self.multi_model:
for m in range(self.num_models):
if "x" in self.network_size[0]:
in_channels, height, width = [int(item) for item in self.network_size[0].split("x")]
else:
in_channels = int(self.network_size[0])
for l, layer_spec in enumerate(self.network_size[1:]):
if "conv" in layer_spec:
raise NotImplementedError
elif "fc" in layer_spec:
out_channels = int(layer_spec.strip("fc"))
layer = torch.nn.Linear(in_channels, out_channels, bias=False)
bias = Parameter(torch.Tensor(out_channels))
in_channels = out_channels
fmap_shape = [in_channels]
fmap_type = "fc"
elif "apool" in layer_spec:
raise NotImplementedError
elif "mpool" in layer_spec:
raise NotImplementedError
elif "flatten" in layer_spec:
layer = torch.nn.Flatten()
in_channels = in_channels * height * width
bias = None
height = 1
width = 1
fmap_shape = [in_channels]
fmap_type = "flatten"
else:
raise ValueError(f"Layer type {layer_spec} is invalid")
if m == 0:
self.layers.append([layer])
self.state_v_bs.append([bias])
self.fmap_shape_list.append(fmap_shape)
self.fmap_type_list.append(fmap_type)
else:
self.layers[l].append(layer)
self.state_v_bs[l].append(bias)
else:
if "x" in self.network_size[0]:
in_channels, height, width = [int(item) for item in self.network_size[0].split("x")]
else:
in_channels = int(self.network_size[0])
for layer_spec in self.network_size[1:]:
if "conv" in layer_spec:
out_channels, kernel_size = [int(item) for item in layer_spec.strip("conv").split("c")]
padding = math.floor(kernel_size / 2)
layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size,
padding=padding, bias=False)
bias = Parameter(torch.Tensor(out_channels))
in_channels = out_channels # Height and Width remains the same.
fmap_shape = [in_channels, height, width]
fmap_type = "conv"
elif "fc" in layer_spec:
out_channels = int(layer_spec.strip("fc"))
layer = torch.nn.Linear(in_channels, out_channels, bias=False)
# print(layer.weight.mean())
bias = Parameter(torch.Tensor(out_channels))
in_channels = out_channels
fmap_shape = [in_channels]
fmap_type = "fc"
elif "apool" in layer_spec:
pool_size = int(layer_spec.strip("apool"))
layer = torch.nn.AvgPool2d(pool_size)
bias = None
height = math.floor(height/pool_size)
width = math.floor(width/pool_size)
in_channels = out_channels
fmap_shape = [in_channels, height, width]
fmap_type = "apool"
elif "mpool" in layer_spec:
pool_size = int(layer_spec.strip("mpool"))
layer = torch.nn.MaxPool2d(pool_size, return_indices=True)
layer.max_index_list = []
bias = None
height = math.floor(height/pool_size)
width = math.floor(width/pool_size)
in_channels = out_channels
fmap_shape = [in_channels, height, width]
fmap_type = "mpool"
elif "flatten" in layer_spec:
layer = torch.nn.Flatten()
in_channels = in_channels * height * width
bias = None
height = 1
width = 1
fmap_shape = [in_channels]
fmap_type = "flatten"
else:
raise ValueError(f"Layer type {layer_spec} is invalid")
self.layers.append(layer)
self.state_v_bs.append(bias)
self.fmap_shape_list.append(fmap_shape)
self.fmap_type_list.append(fmap_type)
if self.multi_model:
for m in range(self.num_models):
setattr(self, f'm{m}_layers_module', nn.ModuleList([layers[m] for layers in self.layers]))
setattr(self, f'm{m}_state_v_bs_param', nn.ParameterList([v_b[m] for v_b in self.state_v_bs]))
else:
self.layers_module = nn.ModuleList(self.layers)
self.state_v_bs_param = nn.ParameterList(self.state_v_bs)
self.reset_parameters()
def _init_param_grads(self):
self.weight_grad = list()
self.bias_grad = list()
for l, layers in enumerate(self.layers):
if self.multi_model:
layer = layers[0]
else:
layer = layers
if self.fmap_type_list[l] in ["fc", "conv"]:
if self.multi_model:
zeros_w = torch.zeros([self.num_models, *layer.weight.size()],
requires_grad = False)
zeros_b = torch.zeros([self.num_models, *self.fmap_shape_list[l]])
else:
zeros_w = torch.zeros(layer.weight.size(), requires_grad = False)
zeros_b = torch.zeros(self.fmap_shape_list[l])
self.weight_grad.append(zeros_w)
self.bias_grad.append(zeros_b)
else:
self.weight_grad.append(None)
self.bias_grad.append(None)
def reset_parameters(self):
for l, layer in enumerate(self.layers):
if self.multi_model:
for m in range(self.num_models):
if isinstance(layer[m], nn.Conv2d) or isinstance(layer[m], nn.Linear):
init.constant_(self.state_v_bs[l][m], 0)
if hasattr(self, 'normal_weight_init'):
if self.normal_weight_init:
init.normal_(layer[m].weight, mean=0,
std=self.weight_init_std)
if hasattr(self, 'weight_bias'):
layer[m].weight = nn.Parameter(layer[m].weight + self.weight_bias)
else:
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
init.constant_(self.state_v_bs[l], 0)
if hasattr(self, 'normal_weight_init'):
if self.normal_weight_init:
init.normal_(layer.weight, mean=0,
std=self.weight_init_std)
if hasattr(self, 'weight_bias'):
layer.weight = nn.Parameter(layer.weight + self.weight_bias)
def forward(self, input):
# input: batch x time x neuron
# state_*: layer x time x batch x neuron
# output: batch x time x neuron
with torch.no_grad():
if self.multi_model:
assert self.num_models == input.shape[0]
# input = input.reshape(input.shape[0] * input.shape[1], input.shape[2], input.shape[3])
self.input = input.reshape(input.shape[0] * input.shape[1], *input.shape[2:])
else:
self.input = input
if self.target_type == 'latency':
if self.multi_model:
self.output_s_cum = torch.zeros(self.num_models * input.shape[1], self.fmap_shape_list[-1][0])
else:
self.output_s_cum = torch.zeros(input.shape[0], self.fmap_shape_list[-1][0])
self.state_i = list()
self.state_v = list()
self.state_v_prime = list()
self.state_s = list()
for l, layers in enumerate(self.layers):
if self.multi_model:
layer = layers[0]
else:
layer = layers
self.state_i.append(list())
self.state_v.append(list())
self.state_v_prime.append(list())
self.state_s.append(list())
# flush the max_index_list
for layer in self.layers:
if isinstance(layer, nn.MaxPool2d):
layer.max_index_list = []
if self.multi_model:
# Merging parameters
self.weight_list = []
self.bias_list = []
for layer_list in self.layers:
if hasattr(layer_list[0], 'weight'):
weight = torch.stack([layer.weight for layer in layer_list])
else:
weight = None
self.weight_list.append(weight)
for state_v_b_list in self.state_v_bs:
if state_v_b_list[0] is not None:
bias = torch.stack([state_v_b for state_v_b in state_v_b_list]).unsqueeze(1)
else:
bias = None
self.bias_list.append(bias)
for t in range(self.time_length):
for l, layers in enumerate(self.layers):
if self.multi_model:
layer = layers[0]
else:
layer = layers
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
if (l == 0):
if self.multi_model:
state_i = torch.bmm(input[:, :, t], self.weight_list[l].permute(0, 2, 1))
self.state_i[l].append(state_i.reshape(state_i.shape[0]*state_i.shape[1], *state_i.shape[2:]) * self.beta_i)
else:
self.state_i[l].append(layer(input[:, t]) * self.beta_i)
else:
if self.multi_model:
state_s = self.state_s[l-1][-1]
state_s_rs = state_s.reshape(self.num_models, int(state_s.shape[0]/self.num_models), *state_s.shape[1:])
state_i = torch.bmm(state_s_rs, self.weight_list[l].permute(0, 2, 1)) * self.beta_i
self.state_i[l].append(state_i.reshape(state_i.shape[0]*state_i.shape[1], *state_i.shape[2:]))
else:
self.state_i[l].append(layer(self.state_s[l-1][-1]) * self.beta_i)
if t != 0:
self.state_i[l][-1] += self.state_i[l][t-1] * (1-self.state_s[l][-1]) * self.alpha_i
if self.multi_model:
state_i = self.state_i[l][-1]
state_i_rs = state_i.reshape(self.num_models, int(state_i.shape[0]/self.num_models), *state_i.shape[1:])
state_v = state_i_rs * self.beta_v + self.bias_list[l] * self.beta_bias
self.state_v[l].append(state_v.reshape(state_v.shape[0]*state_v.shape[1], *state_v.shape[2:]))
else:
if len(self.state_i[l][-1].shape) == 4:
self.state_v[l].append(self.state_i[l][-1] * self.beta_v + self.state_v_bs[l].view(-1,1,1) * self.beta_bias)
elif len(self.state_i[l][-1].shape) == 2:
self.state_v[l].append(self.state_i[l][-1] * self.beta_v + self.state_v_bs[l] * self.beta_bias)
else:
raise ValueError("Something's wrong.")
if t != 0:
self.state_v[l][-1] += self.state_v[l][t-1] * (1-self.state_s[l][-1]) * self.alpha_v
if t != 0:
self.state_v_prime[l].append(self.state_v[l][-1] - self.state_v[l][-2] * (1 - self.state_s[l][-1]))
else:
self.state_v_prime[l].append(self.state_v[l][-1])
self.state_v_prime[l][-1] = torch.clamp(self.state_v_prime[l][-1], min=1e-2)
self.state_s[l].append(self.act(self.state_v[l][-1]))
# Average pooling or Max pooling.
elif isinstance(layer, nn.AvgPool2d) or isinstance(layer, nn.Flatten):
# It is assumed that the first layer is always conv or fc.
if l == 0:
self.state_s[l].append(layer(self.input[:, t]))
else:
self.state_s[l].append(layer(self.state_s[l-1][-1]))
elif isinstance(layer, nn.MaxPool2d):
# It is assumed that the first layer is always conv or fc.
pool_result, max_index = layer(self.state_s[l-1][-1])
layer.max_index_list.append(max_index)
self.state_s[l].append(pool_result)
# Early stopping after every neuron spiked.
if self.target_type == 'latency':
self.output_s_cum += self.state_s[-1][-1]
if (self.output_s_cum > 0).all():
break
self.term_length = t+1
# Reshape, permute, convert the output spike train.
self.output = torch.stack(self.state_s[-1]).permute(1, 0, 2)
if self.multi_model:
self.output_each_model = self.output.reshape(self.num_models, int(self.output.shape[0]/self.num_models),
*self.output.shape[1:])
# batch x time x feature
self.calc_num_spike()
return self.output
def calc_loss(self, target, calc_spike_loss=False):
self.batch_size = target.shape[0]
if self.target_type == 'train':
with torch.no_grad():
self.diff = self.apply_alpha_kernel(self.output.float() - target.float())[:, :(self.time_length + self.alpha_extend), :]
self.L = torch.pow(self.diff, 2) / (self.time_length * self.batch_size)
if self.multi_model:
self.loss = self.L.reshape(self.num_models, -1).sum(1) * self.num_models
else:
self.loss = self.L.sum()
elif self.target_type == 'count':
with torch.no_grad():
self.diff = self.apply_alpha_kernel(self.output.float() - target.float())[:, :(self.time_length + self.alpha_extend), :]
self.L = torch.pow(self.diff[:, -1, :], 2) / (self.time_length * self.batch_size)
if self.multi_model:
self.loss = self.L.reshape(self.num_models, -1).sum(1) * self.num_models
else:
self.loss = self.L.sum()
elif self.target_type == 'latency':
loss = nn.CrossEntropyLoss(reduction='none')
self.tl_m_tf = (self.output * torch.arange(self.term_length, 0, -1).view(1, -1, 1)).max(dim=1).values # (term_length - t_first), =term_length for the first time step, =1 for the last time step, =0 for no spike
self.sm_inp = self.tl_m_tf.float() * self.softmax_beta
self.sm_inp.requires_grad = True
self.celoss_per_batch = loss(self.sm_inp, target) / self.batch_size * self.num_models
self.celoss = self.celoss_per_batch.sum()
if self.multi_model:
self.celoss_per_model = self.celoss_per_batch.reshape(self.num_models, -1).sum(1)
self.celoss.backward()
with torch.no_grad():
self.L_nospike_per_batch = (torch.gather(self.output.sum(1), 1, target.view(-1, 1)) == 0).float() / self.batch_size * self.num_models * self.lambda_nospike
self.loss_nospike = self.L_nospike_per_batch.sum()
if self.multi_model:
self.loss_nospike_per_model = self.L_nospike_per_batch.reshape(self.num_models, -1).sum(1)
if self.multi_model:
self.loss = self.celoss_per_model + self.loss_nospike_per_model
else:
self.loss = self.celoss + self.loss_nospike
def calc_first_stime(self):
"""
Args
self.output : [batch x time x feature]
times : [batch]
"""
decreasing_output = self.output * torch.arange(self.term_length, 0, -1).view(1, -1, 1)
max_each_neuron = decreasing_output.max(dim=1).values
# batch x feature
max_whole_network = max_each_neuron.max(dim=1).values
# batch
first_stime = self.term_length - max_whole_network
# batch
if self.multi_model:
first_stime_model = first_stime.reshape(self.num_models, -1)
self.first_stime_min = first_stime_model.min(1).values.tolist()
self.first_stime_mean = first_stime_model.mean(1).tolist()
else:
self.first_stime_min = first_stime.min().item()
self.first_stime_mean = first_stime.mean().item()
return first_stime.int()
def calc_num_spike(self):
"""
Add the number of total spikes except the last layer.
Note that this value will increase with batch_size.
"""
num_spike_total = []
for l, layers in enumerate(self.layers):
if self.multi_model:
layer = layers[0]
else:
layer = layers
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
if self.multi_model:
num_spike_total_each_model = torch.stack(self.state_s[l]).permute(1, 0, 2).reshape(self.num_models, int(self.output.shape[0] / self.num_models), self.term_length, -1).sum(1).sum(1).sum(1).int()
num_spike_total.append(num_spike_total_each_model)
else:
num_spike_total.append(int(torch.stack(self.state_s[l]).sum().item()))
if self.multi_model:
num_spike_total = torch.stack(num_spike_total).t().tolist()
self.num_spike_total = num_spike_total
first_stime = self.calc_first_stime()
num_spike_nec = []
for l, layers in enumerate(self.layers):
if self.multi_model:
layer = layers[0]
else:
layer = layers
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
num_spike_nec_each_batch = torch.tensor([torch.stack(self.state_s[l]).int()[:(first_stime[b] + 1), b].sum().item() for b in range(self.output.shape[0])])
if self.multi_model:
num_spike_nec.append(num_spike_nec_each_batch.reshape(self.num_models, -1).sum(1))
else:
num_spike_nec.append(num_spike_nec_each_batch.sum().item())
if self.multi_model:
num_spike_nec = torch.stack(num_spike_nec).t().tolist()
self.num_spike_nec = num_spike_nec
return
def apply_alpha_kernel(self, input, padding=True, flip=True, prime=False):
"""
Applies self.kernel or self.kernel_prime to given input.
Arg
input : input.shape = [batch_size, num_time_step, num_features]
padding : Whether apply zero padding at both sides or not.
flip : Whether apply flip to the kernel or not.
Usually flip is used for inference and unflipped kernel is used
for BP.
prime : Whether to use kernel_prime or not.
Return
output : result.shape = [batch_size, num_time_step+alpha, num_features]
"""
assert len(input.shape)==3, "Input shape must be rank-3"
batch_size, num_time_step, num_features = input.shape
kernel = self.alpha_kernel_prime if prime else self.alpha_kernel
kernel = kernel.flip(2) if flip else kernel
padding_length = kernel.numel()-1 if padding else 0
input = input.float().permute(0, 2, 1)
input = input.reshape(batch_size * num_features, 1, num_time_step)
output = F.conv1d(input, kernel, padding=padding_length)
output = output.reshape(batch_size, num_features, -1)
output = output.permute(0, 2, 1)
return output
def clean_state(self):
self.input = None
self.target = None
self.output = None
self.output_each_model = None
self.output_s_cum = None
self.weight_list = None
self.bias_list = None
self.weight_grad = None
self.bias_grad = None
self.state_i = None
self.state_v = None
self.state_v_prime = None
self.state_s = None
self.state_i_grad = None
self.state_v_grad = None
self.state_v_dep_grad = None
self.state_s_grad = None
self.state_t_grad = None
self.state_v_grad_epr_ef1 = None
self.state_v_grad_epr_ef2 = None
self.dLdS = None
self.dLdT = None
gc.collect()
def _init_backward(self):
self.state_i_grad = list()
self.state_v_grad = list()
if self.lrule != 'Timing':
self.state_s_grad = list()
else:
self.state_s_grad = None
if self.lrule != 'RNN':
self.state_v_dep_grad = list()
else:
self.state_v_dep_grad = None
if self.lrule in ['Timing', 'ANTLR']:
self.state_t_grad = list()
self.state_v_grad_epr_ef1 = list()
self.state_v_grad_epr_ef2 = list()
else:
self.state_t_grad = None
self.state_v_grad_epr_ef1 = None
self.state_v_grad_epr_ef2 = None
for l in range(self.num_layer):
# state_*_grad[l]: time x batch x neuron
zeros = torch.zeros(self.term_length, self.batch_size,
*self.fmap_shape_list[l], requires_grad=False)
if self.state_s_grad is not None:
self.state_s_grad.append(zeros.clone())
if self.state_t_grad is not None:
self.state_t_grad.append(zeros.clone())
if self.fmap_type_list[l] in ["conv", "fc"]:
self.state_i_grad.append(zeros.clone())
self.state_v_grad.append(zeros.clone())
if self.state_v_dep_grad is not None:
self.state_v_dep_grad.append(zeros.clone())
if self.state_v_grad_epr_ef1 is not None:
self.state_v_grad_epr_ef1.append(zeros.clone())
if self.state_v_grad_epr_ef2 is not None:
self.state_v_grad_epr_ef2.append(zeros.clone())
else:
self.state_i_grad.append(None)
self.state_v_grad.append(None)
if self.state_v_dep_grad is not None:
self.state_v_dep_grad.append(None)
if self.state_v_grad_epr_ef1 is not None:
self.state_v_grad_epr_ef1.append(None)
if self.state_v_grad_epr_ef2 is not None:
self.state_v_grad_epr_ef2.append(None)
def backward_custom(self, target, epoch=0):
"""
Calculate gradient of each parameters.
Args
output : output value.
output.shape = [batch_size, num_time_step, num_features]
target : target value.
for train and count target:
target.shape = [batch_size, num_time_step, num_features]
for latency target:
target.shape = [batch_size]
"""
# Initialize backward variables when batch_size is changed.
if self.multi_model:
if self.target_type == 'latency':
assert target.dim() == 2
target = target.reshape(target.shape[0] * target.shape[1])
else:
assert target.dim() == 4
target = target.reshape(target.shape[0] * target.shape[1], *target.shape[2:])
self.batch_size = target.shape[0]
assert self.input.shape[0] == self.batch_size
self._init_param_grads()
self._init_backward()
# batch_size, num_time_step, num_features = self.output.shape
if self.target_type == 'train' or self.target_type == 'count':
assert self.output.shape == target.shape, "Output and target should be in the same shape"
with torch.no_grad():
# batch_size, num_time_step, num_features = self.output.shape
self.calc_loss(target)
### Getting dLdS.
if self.target_type == 'train':
dLdS = (self.apply_alpha_kernel(self.diff, padding=False, flip=False)
* 2 / (self.time_length * self.batch_size))
elif self.target_type == 'count':
dLdS = self.diff[:, -1, :].view(self.batch_size, 1, -1).repeat(1, self.time_length, 1) * 2 / (self.time_length * self.batch_size) # since alpha_exp = 1
if self.multi_model:
dLdS *= self.num_models
# Reshape to [time, batch, neuron]
self.dLdS = dLdS.permute(1, 0, 2)
### Getting dLdT.
if self.target_type == 'train':
dLdT_raw = self.apply_alpha_kernel(self.diff, flip=False, prime=True)
dLdT_raw = (dLdT_raw[:, (self.alpha_kernel_prime.numel()-2):(self.time_length + self.alpha_kernel_prime.numel()-2), :]
* (-2) / (self.time_length * self.batch_size))
# time x batch x neuron
elif self.target_type == 'count':
dLdT_raw = torch.zeros(self.output.shape)
if self.multi_model:
dLdT_raw *= self.num_models
dLdT = self.output * dLdT_raw
# Reshape to [time, batch, neuron]
self.dLdT_raw = dLdT_raw.permute(1, 0, 2)
self.dLdT = dLdT.permute(1, 0, 2)
elif self.target_type == 'latency':
assert self.output.shape[0] == target.shape[0], "Output and target should be in appropriate shape"
self.calc_loss(target)
with torch.no_grad():
self.dLdS = torch.zeros(self.batch_size, *self.fmap_shape_list[-1]).scatter_(1, target.view(-1, 1), -self.L_nospike_per_batch).repeat(self.term_length, 1, 1)
# time x batch x neuron
dLdT = torch.zeros(self.term_length, self.batch_size, *self.fmap_shape_list[-1])
self.sm_grad = self.sm_inp.grad
self.sm_grad[self.tl_m_tf == 0] = 0
idxs = torch.clamp(self.term_length - self.tl_m_tf, 0, self.term_length-1).long()
self.dLdT = dLdT.scatter_(0, idxs.unsqueeze(0), self.sm_grad.unsqueeze(0) * (-self.softmax_beta))
# time x batch x neuron
with torch.no_grad():
if self.lrule == 'Activation':
self.gradAdd(self.dLdS, self.lrule)
elif self.lrule == 'Timing':
self.gradAdd(self.dLdT, 'Timing')
elif self.lrule == 'ANTLR':
self.lambda_timing = 1
self.lambda_act = 1
self.gradAdd((self.dLdT, self.dLdS), 'ANTLR')
else:
raise ValueError("Wrong lrule name.")
for l, layer in enumerate(self.layers):
if self.multi_model:
for m in range(self.num_models):
if type(self.grad_clip) == list:
assert self.num_models % len(self.grad_clip) == 0, f"{self.grad_clip}"
grad_clip = self.grad_clip[m // (self.num_models // len(self.grad_clip))]
else:
grad_clip = self.grad_clip
if isinstance(layer[m], nn.Conv2d) or isinstance(layer[m], nn.Linear):
layer[m].weight.grad = torch.clamp(layer[m].weight.grad, -abs(grad_clip), abs(grad_clip))
self.state_v_bs[l][m].grad = torch.clamp(self.state_v_bs[l][m].grad, -abs(grad_clip), abs(grad_clip))
else:
if type(self.grad_clip) == list:
grad_clip = self.grad_clip[0]
else:
grad_clip = self.grad_clip
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
layer.weight.grad = torch.clamp(layer.weight.grad, -abs(grad_clip), abs(grad_clip))
self.state_v_bs[l].grad = torch.clamp(self.state_v_bs[l].grad, -abs(grad_clip), abs(grad_clip))
def gradAdd(self, output_grad_extrn, lrule, scale=1.0):
# output_grad_extrn: time x batch x neuron
with torch.no_grad():
if lrule == 'Activation':
self.bpAct(output_grad_extrn, 'SRM')
elif lrule == 'Timing':
self.bpTiming_recurrent(output_grad_extrn)
elif lrule == 'ANTLR':
self.bpANTLR(output_grad_extrn)
for l, layers in enumerate(self.layers):
if self.multi_model:
for m, layer in enumerate(layers):
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
if type(layer.weight.grad) == type(None):
layer.weight.grad = self.weight_grad[l][m] * scale
else:
layer.weight.grad += self.weight_grad[l][m] * scale
if hasattr(self, 'bias_grad'):
if type(self.state_v_bs[l][m].grad) == type(None):
self.state_v_bs[l][m].grad = self.bias_grad[l][m] * scale
else:
self.state_v_bs[l][m].grad += self.bias_grad[l][m] * scale
else:
layer = layers
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
if type(layer.weight.grad) == type(None):
layer.weight.grad = self.weight_grad[l] * scale
else:
layer.weight.grad += self.weight_grad[l] * scale
if hasattr(self, 'bias_grad'):
if type(self.state_v_bs[l].grad) == type(None):
self.state_v_bs[l].grad = self.bias_grad[l] * scale
else:
self.state_v_bs[l].grad += self.bias_grad[l] * scale
def bpAct(self, output_grad_extrn, lrule):
# output_grad_extrn: time x batch x neuron
with torch.no_grad():
for t in range(self.term_length-1, -1, -1):
for l in range(self.num_layer-1, -1, -1):
###### dL/dS[t] from upper layer
if l == self.num_layer-1:
self.state_s_grad[l][t] = output_grad_extrn[t]
else:
if self.fmap_type_list[l+1] in ["fc", "conv"]:
self.prop_dLdI_to_dLdX(t, l, X='S')
# For pooling & flatten.
else:
self.prop_dLdX_to_dLdX(t, l, X='S')
if self.fmap_type_list[l] in ["fc", "conv"]:
###### dL/dV[t] from dL/dS[t]
self.state_v_grad[l][t] = self.surr_deriv(self.state_v[l][t]) * self.state_s_grad[l][t]
###### dL/dI[t] from dL/dV[t]
self.prop_dLdV_to_dLdI(lrule, t, l)
self.prop_dLdI_to_dLdW(lrule)
def bpTiming_recurrent(self, output_grad_extrn):
# output_grad_extrn: time x batch x neuron
with torch.no_grad():
for t in range(self.term_length-1, -1, -1):
for l in range(self.num_layer-1, -1, -1):
###### dL/dT[t] from upper layer
if l == self.num_layer-1:
self.state_t_grad[l][t] = output_grad_extrn[t]
else:
###### dL/dT[t] from upper layer dL/dV[t]
if self.fmap_type_list[l+1] in ["fc", "conv"]:
self.tprop_dLdV_to_dLdT(t, l)
else:
self.prop_dLdX_to_dLdX(t, l, X='T')
if self.fmap_type_list[l] in ["fc", "conv"]:
###### dL/dV[t] from dL/dT[t]
effective_input = (self.state_s[l][t] == 1)
self.state_v_grad[l][t] = 0
self.state_v_grad[l][t][effective_input] = self.state_t_grad[l][t][effective_input] / -self.state_v_prime[l][t][effective_input]
###### dL/dI[t] from dL/dV[t]
self.prop_dLdV_to_dLdI('SRM', t, l)
self.prop_dLdI_to_dLdW('SRM', True)
def bpANTLR(self, output_grad_extrn): # timing + SRM (not RNN)
# output_grad_extrn: 2 (dLdT, dLdS) x time x batch x neuron
with torch.no_grad():
for t in range(self.term_length-1, -1, -1):
for l in range(self.num_layer-1, -1, -1):
###### dL/dT[t], dL/dS[t] from upper layer
if l == self.num_layer-1:
self.state_t_grad[l][t] = output_grad_extrn[0][t]
self.state_s_grad[l][t] = output_grad_extrn[1][t]
else:
if self.fmap_type_list[l+1] in ["fc", "conv"]:
###### dL/dT[t] from upper layer dL/dV[t]
self.tprop_dLdV_to_dLdT(t, l)
###### dL/dS[t] from upper layer dL/dV[t]
self.prop_dLdI_to_dLdX(t, l, X='S')
else:
# For pooling & flatten
self.prop_dLdX_to_dLdX(t, l, X='T')
self.prop_dLdX_to_dLdX(t, l, X='S')
if self.fmap_type_list[l] in ["fc", "conv"]:
###### dL/dV[t] from dL/dT[t], dLdS[t]
effective_input = (self.state_s[l][t] == 1)
act_vgrad = self.surr_deriv(self.state_v[l][t]) * self.state_s_grad[l][t]
tim_vgrad = torch.zeros(self.state_t_grad[l][t].shape)
tim_vgrad[effective_input] = self.state_t_grad[l][t][effective_input] / -self.state_v_prime[l][t][effective_input]
self.state_v_grad[l][t] = self.lambda_act * act_vgrad
self.state_v_grad[l][t][effective_input] += self.lambda_timing * tim_vgrad[effective_input]
###### dL/dI[t] from dL/dV[t]
self.prop_dLdV_to_dLdI('SRM', t, l)
self.prop_dLdI_to_dLdW('SRM')
###### timing weight not used
def prop_dLdI_to_dLdX(self, time, layer, X):
t = time; l = layer
if X == 'S':
state_i_grad = self.state_i_grad
state_x_grad = self.state_s_grad
elif X == 'T':
state_i_grad = self.state_v_grad_epr_ef2
state_x_grad = self.state_t_grad
else:
raise ValueError("Invalid value for X.")
with torch.no_grad():
if self.fmap_type_list[l+1] == "fc":
if self.multi_model:
state_i_grad_rs = state_i_grad[l+1][t].reshape(self.num_models, int(self.batch_size / self.num_models), -1)
x_grad_per_beta_i = torch.bmm(state_i_grad_rs, self.weight_list[l+1]).reshape(self.batch_size, -1)
else:
x_grad_per_beta_i = torch.mm(state_i_grad[l+1][t], self.layers[l+1].weight)
state_x_grad[l][t] = self.beta_i * x_grad_per_beta_i
elif self.fmap_type_list[l+1] == "conv":
assert not self.multi_model
padding = self.layers[l+1].padding
x_grad_per_beta_i = torch.nn.grad.conv2d_input(state_x_grad[l][t].shape,
self.layers[l+1].weight,
state_i_grad[l+1][t],
padding=padding)
state_x_grad[l][t] = self.beta_i * x_grad_per_beta_i
# t_grad of spiked timestep should only be nonzero value.
if X == 'T':
state_x_grad[l][t] *= self.state_s[l][t]
return
def tprop_dLdV_to_dLdT(self, time, layer):
t = time; l = layer
with torch.no_grad():
if time != self.term_length-1:
self.state_v_grad_epr_ef1[l+1][t] = - (- self.state_v_grad[l+1][t+1] / 2) * (1 - self.state_s[l+1][t]) # for dLdV[x+t] * -eps[t-1]
self.state_v_grad_epr_ef1[l+1][t] += self.alpha_v * (1 - self.state_s[l+1][t]) * self.state_v_grad_epr_ef1[l+1][t+1]
self.state_v_grad_epr_ef2[l+1][t] = self.alpha_i * (1 - self.state_s[l+1][t]) * self.state_v_grad_epr_ef2[l+1][t+1]
else:
self.state_v_grad_epr_ef1[l+1][t] = torch.zeros(self.batch_size, *self.fmap_shape_list[l+1])
self.state_v_grad_epr_ef2[l+1][t] = torch.zeros(self.batch_size, *self.fmap_shape_list[l+1])
# Changed the sign.
self.state_v_grad_epr_ef1[l+1][t] += self.alpha_v * (- self.state_v_grad[l+1][t] / 2) # for dLdV[x+t] * eps[t+1]
self.state_v_grad_epr_ef2[l+1][t] += self.beta_v * self.alpha_i * (- self.state_v_grad[l+1][t] / 2) # for dLdV[x+t] * eps[t+1]
self.state_v_grad_epr_ef2[l+1][t] += self.beta_v * self.state_v_grad_epr_ef1[l+1][t]
self.prop_dLdI_to_dLdX(t, l, X='T')
return
def prop_dLdX_to_dLdX(self, time, layer, X):
t = time; l = layer
if X == 'S':
state_x_grad = self.state_s_grad
elif X == 'T':
state_x_grad = self.state_t_grad
else:
raise ValueError("Invalid value for X.")
with torch.no_grad():
if "pool" in self.fmap_type_list[l+1]:
kernel_size = self.layers[l+1].kernel_size
if self.fmap_type_list[l+1] == "apool":
x_grad = F.interpolate(state_x_grad[l+1][t], scale_factor=kernel_size)
x_grad /= kernel_size * kernel_size
elif self.fmap_type_list[l+1] == "mpool":
x_grad = F.max_unpool2d(state_x_grad[l+1][t],
self.layers[l+1].max_index_list[t],
kernel_size=kernel_size,
output_size=self.fmap_shape_list[l][1:])
if list(x_grad.shape[1:]) != self.fmap_shape_list[l]:
to_pad = self.fmap_shape_list[l][-1] - x_grad.shape[-1]
x_grad = F.pad(x_grad, (0, to_pad, 0, to_pad), "constant", 0)
assert list(x_grad.shape[1:]) == self.fmap_shape_list[l]
state_x_grad[l][t] = x_grad
elif self.fmap_type_list[l+1] == "flatten":
state_x_grad[l][t] = state_x_grad[l+1][t].view(state_x_grad[l][t].shape)
return
def prop_dLdV_to_dLdI(self, style, time, layer):
with torch.no_grad():
t = time
l = layer
if style == 'RNN':
###### dL/dV[t] from next time step (dL/dV[t+1])
if t != self.term_length-1:
self.state_v_grad[l][t] += self.alpha_v * (1 - self.state_s[l][t]) * self.state_v_grad[l][t+1]
###### dL/dI[t] from dL/dV[t]
self.state_i_grad[l][t] = self.beta_v * self.state_v_grad[l][t]
###### dL/dI[t] from next time step (dL/dI[t+1])
if t != self.term_length-1:
self.state_i_grad[l][t] += self.alpha_i * (1 - self.state_s[l][t]) * self.state_i_grad[l][t+1]
elif style == 'SRM':
###### dL/dV[t] from next time step (dL/dV[t+1])
self.state_v_dep_grad[l][t] = self.state_v_grad[l][t]
if t != self.term_length-1:
self.state_v_dep_grad[l][t] += self.alpha_v * (1 - self.state_s[l][t]) * self.state_v_dep_grad[l][t+1]
###### dL/dI[t] from dL/dV[t]
self.state_i_grad[l][t] = self.beta_v * self.state_v_dep_grad[l][t]
###### dL/dI[t] from next time step (dL/dI[t+1])
if t != self.term_length-1:
self.state_i_grad[l][t] += self.alpha_i * (1 - self.state_s[l][t]) * self.state_i_grad[l][t+1]
elif style == 'SLAYER':
###### dL/dV[t] from next time step (dL/dV[t+1])
self.state_v_dep_grad[l][t] = self.state_v_grad[l][t]
if t != self.term_length-1:
self.state_v_dep_grad[l][t] += self.alpha_v * self.state_v_dep_grad[l][t+1]
###### dL/dI[t] from dL/dV[t]
self.state_i_grad[l][t] = self.beta_v * self.state_v_dep_grad[l][t]
###### dL/dI[t] from next time step (dL/dI[t+1])
if t != self.term_length-1:
self.state_i_grad[l][t] += self.alpha_i * self.state_i_grad[l][t+1]
else:
raise ValueError("Invalid style name.")
def prop_dLdI_to_dLdW(self, style, is_timing=False):
with torch.no_grad():
for l in range(self.num_layer):
if self.fmap_type_list[l] in ["fc", "conv"]:
# time_length x batch x f_shape
if l == 0:
hidden_s_all = self.input.transpose(0,1)[:self.term_length]
else:
hidden_s_all = torch.stack(self.state_s[l-1])
if style == 'RNN':
v_dep_grad = self.state_v_grad[l]
elif style == 'SRM' or style == 'SLAYER':
v_dep_grad = self.state_v_dep_grad[l]
else:
raise ValueError("Something's wrong.")
### Calc weight grad for fc layer.
if self.fmap_type_list[l] == "fc":
if self.multi_model:
hidden_t_m_b_n = hidden_s_all.reshape(self.term_length, self.num_models, int(self.batch_size / self.num_models), -1)
hidden_m_t_b_n = hidden_t_m_b_n.permute(1, 0, 2, 3)
hidden_m_tb_n = hidden_m_t_b_n.reshape(self.num_models, self.term_length * int(self.batch_size / self.num_models), -1)
igrad_t_m_b_n = self.state_i_grad[l].reshape(self.term_length, self.num_models, int(self.batch_size / self.num_models), -1)
igrad_m_t_b_n = igrad_t_m_b_n.permute(1, 0, 2, 3)
igrad_m_tb_n = igrad_m_t_b_n.reshape(self.num_models, self.term_length * int(self.batch_size / self.num_models), -1)
igrad_m_n_tb = igrad_m_tb_n.permute(0, 2, 1)
self.weight_grad[l] = torch.bmm(igrad_m_n_tb, hidden_m_tb_n) * self.beta_i
else:
self.weight_grad[l] = torch.mm(self.state_i_grad[l].reshape(-1, self.state_i_grad[l].shape[-1]).t(),
hidden_s_all.reshape(-1, hidden_s_all.shape[-1])) * self.beta_i
if is_timing:
if self.multi_model:
fan_in = self.weight_grad[l].shape[2]
timing_penalty_coeff = self.timing_penalty / fan_in
no_spike = 1 - (torch.stack(self.state_s[l]).sum(dim=0) > 0).float()
# model_batch x fan_out
no_spike = no_spike.reshape(self.num_models, int(self.batch_size / self.num_models), -1)
# model x batch x fan_out
no_spike_dw = timing_penalty_coeff * no_spike.mean(dim=1).reshape(self.num_models, -1, 1)
# model x fan_out x 1
self.weight_grad[l] -= no_spike_dw
else:
fan_in = self.weight_grad[l].shape[1]
timing_penalty_coeff = self.timing_penalty / fan_in
no_spike = 1 - (torch.stack(self.state_s[l]).sum(dim=0) > 0).float()
# batch x fan_out
no_spike_dw = timing_penalty_coeff * no_spike.mean(dim=0).reshape(-1, 1)
# fan_out x 1