-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_artistic.py
238 lines (196 loc) · 9.49 KB
/
train_artistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms.functional import resize
import torchvision.transforms as T
import numpy as np
from scene.VGG import VGGEncoder, normalize_vgg
from utils.loss_utils import cal_adain_style_loss, cal_mse_content_loss
def getDataLoader(dataset_path, batch_size, sampler, image_side_length=256, num_workers=2):
transform = T.Compose([
T.Resize(size=(image_side_length*2, image_side_length*2)),
T.RandomCrop(image_side_length),
T.ToTensor(),
])
train_dataset = datasets.ImageFolder(dataset_path, transform=transform)
dataloader = DataLoader(train_dataset, batch_size=batch_size, sampler=sampler(len(train_dataset)), num_workers=num_workers)
return dataloader
def InfiniteSampler(n):
# i = 0
i = n - 1
order = np.random.permutation(n)
while True:
yield order[i]
i += 1
if i >= n:
np.random.seed()
order = np.random.permutation(n)
i = 0
class InfiniteSamplerWrapper(torch.utils.data.sampler.Sampler):
def __init__(self, num_samples):
self.num_samples = num_samples
def __iter__(self):
return iter(InfiniteSampler(self.num_samples))
def __len__(self):
return 2 ** 31
def training(dataset, opt, pipe, ckpt_path, decoder_path, style_weight, content_preserve):
opt.iterations = 100_000 if not decoder_path else 30_000
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
# load the feature reconstructed gaussians ckpt file
scene = Scene(dataset, gaussians, load_path=ckpt_path)
vgg_encoder = VGGEncoder().cuda()
# compute the final vgg features for each point, and init pointnet decoder
gaussians.training_setup_style(opt, decoder_path)
# init wikiart dataset
style_loader = getDataLoader(args.wikiartdir, batch_size=1, sampler=InfiniteSamplerWrapper,
image_side_length=256, num_workers=4)
style_iter = iter(style_loader)
bg_color = [1]*3 if dataset.white_background else [0]*3
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Artistic training", bar_format='{l_bar}{r_bar}')
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
iter_start.record()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# content preserve training
if content_preserve and iteration % 7 == 0:
decoded_rgb = gaussians.decoder(gaussians.final_vgg_features.detach()) # [N, 3]
render_pkg = render(viewpoint_cam, gaussians, pipe, background, override_color=decoded_rgb)
rendered_rgb = render_pkg["render"] # [3, H, W]
gt_image = viewpoint_cam.original_image.cuda() # [3, H, W]
loss = l1_loss(gt_image, rendered_rgb)
loss.backward()
iter_end.record()
if iteration % 10 == 0:
progress_bar.update(10)
tb_writer.add_scalar('train_loss/content_preserve', loss.item(), iteration)
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
continue
# get style_img, this style_img has NOT been normalized according to the pretrained VGGmodel
style_img = next(style_iter)[0].cuda()
gt_image = viewpoint_cam.original_image.cuda() # [3, H, W]
# Render
with torch.no_grad():
style_img_features = vgg_encoder(normalize_vgg(style_img)) # [1, C, H, W]
gt_image_features = vgg_encoder(normalize_vgg(gt_image.unsqueeze(0)))
# decoder the features of points to rgb
tranfered_features = gaussians.style_transfer(
gaussians.final_vgg_features.detach(), # point cloud features [N, C]
style_img_features.relu3_1,
)
decoded_rgb = gaussians.decoder(tranfered_features) # [N, 3]
render_pkg = render(viewpoint_cam, gaussians, pipe, background, override_color=decoded_rgb)
rendered_rgb = render_pkg["render"] # [3, H, W]
# style loss and content loss
rendered_rgb_features = vgg_encoder(normalize_vgg(rendered_rgb.unsqueeze(0)))
content_loss = cal_mse_content_loss(gt_image_features.relu4_1, rendered_rgb_features.relu4_1)
style_loss = 0.
for style_feature, image_feature in zip(style_img_features, rendered_rgb_features):
style_loss += cal_adain_style_loss(style_feature, image_feature)
loss = content_loss + style_loss * style_weight
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log
tb_writer.add_scalar('train_loss/content_loss', content_loss.item(), iteration)
tb_writer.add_scalar('train_loss/style_loss', style_loss.item(), iteration)
if iteration % 500 == 0:
style_img = resize(style_img, (128, 128))
rendered_rgb.clamp_(0, 1)
rendered_rgb[:, -128:, -128:] = style_img.squeeze(0)
tb_writer.add_image('stylized_img', rendered_rgb.clamp(0,1), iteration, dataformats='CHW')
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
# Save model
os.makedirs(args.model_path + "/chkpnt", exist_ok = True)
torch.save(gaussians.capture(is_style_model=True), args.model_path + "/chkpnt" + "/gaussians.pth")
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = SummaryWriter(args.model_path)
return tb_writer
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--decoder_path", type=str, default=None)
parser.add_argument("--rendering_mode", type=str, default="rgb", choices=["rgb", "feature"])
parser.add_argument("--wikiartdir", type=str, default="datasets/wikiart")
parser.add_argument("--exp_name", type=str, default='default')
parser.add_argument("--style_weight", type=float, default=10.)
parser.add_argument("--content_preserve", action='store_true', default=False)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
if args.source_path[-1] == '/':
args.source_path = args.source_path[:-1]
args.model_path = os.path.join("./output", os.path.basename(args.source_path), "artistic", args.exp_name)
print("Optimizing " + args.model_path + (' with content_preserve' if args.content_preserve else ''))
# Initialize system state (RNG)
safe_state(args.quiet)
# configure and run training
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.ckpt_path, args.decoder_path, args.style_weight, args.content_preserve)
# All done
print("\nArtistic training complete.")