-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathattemptOne.twb
1502 lines (1501 loc) · 102 KB
/
attemptOne.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 10500.18.0210.2209 -->
<workbook original-version='10.5' source-build='10.5.1 (10500.18.0210.2209)' source-platform='win' version='10.5' xmlns:user='http://www.tableausoftware.com/xml/user'>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='Womens Clothing E-Commerce Reviews' inline='true' name='federated.0588d5e1hu3h781bzv4160avu7sv' version='10.5'>
<connection class='federated'>
<named-connections>
<named-connection caption='Womens Clothing E-Commerce Reviews' name='textscan.1obnilz1r6cw0z14j3c8z1gcdclj'>
<connection class='textscan' directory='D:/Miscellaneous/Work/ML/Women Clothing Review/womens-ecommerce-clothing-reviews' filename='Womens Clothing E-Commerce Reviews.csv' password='' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.1obnilz1r6cw0z14j3c8z1gcdclj' name='Womens Clothing E-Commerce Reviews.csv' table='[Womens Clothing E-Commerce Reviews#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_IN' separator=','>
<column datatype='integer' name='F1' ordinal='0' />
<column datatype='integer' name='Clothing ID' ordinal='1' />
<column datatype='integer' name='Age' ordinal='2' />
<column datatype='string' name='Title' ordinal='3' />
<column datatype='string' name='Review Text' ordinal='4' />
<column datatype='integer' name='Rating' ordinal='5' />
<column datatype='integer' name='Recommended IND' ordinal='6' />
<column datatype='integer' name='Positive Feedback Count' ordinal='7' />
<column datatype='string' name='Division Name' ordinal='8' />
<column datatype='string' name='Department Name' ordinal='9' />
<column datatype='string' name='Class Name' ordinal='10' />
</columns>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_GB"</attribute>
<attribute datatype='string' name='currency'>"Rs"</attribute>
<attribute datatype='string' name='debit-close-char'>""</attribute>
<attribute datatype='string' name='debit-open-char'>""</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_IN"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>F1</remote-name>
<remote-type>20</remote-type>
<local-name>[F1]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>F1</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Clothing ID</remote-name>
<remote-type>20</remote-type>
<local-name>[Clothing ID]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Clothing ID</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Age</remote-name>
<remote-type>20</remote-type>
<local-name>[Age]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Age</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Title</remote-name>
<remote-type>129</remote-type>
<local-name>[Title]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Title</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Review Text</remote-name>
<remote-type>129</remote-type>
<local-name>[Review Text]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Review Text</remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Rating</remote-name>
<remote-type>20</remote-type>
<local-name>[Rating]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Rating</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Recommended IND</remote-name>
<remote-type>20</remote-type>
<local-name>[Recommended IND]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Recommended IND</remote-alias>
<ordinal>6</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Positive Feedback Count</remote-name>
<remote-type>20</remote-type>
<local-name>[Positive Feedback Count]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Positive Feedback Count</remote-alias>
<ordinal>7</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Division Name</remote-name>
<remote-type>129</remote-type>
<local-name>[Division Name]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Division Name</remote-alias>
<ordinal>8</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Department Name</remote-name>
<remote-type>129</remote-type>
<local-name>[Department Name]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Department Name</remote-alias>
<ordinal>9</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Class Name</remote-name>
<remote-type>129</remote-type>
<local-name>[Class Name]</local-name>
<parent-name>[Womens Clothing E-Commerce Reviews.csv]</parent-name>
<remote-alias>Class Name</remote-alias>
<ordinal>10</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RGB' />
</metadata-record>
</metadata-records>
</connection>
<column datatype='integer' name='[Clothing ID]' role='dimension' type='ordinal' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<layout dim-ordering='alphabetic' dim-percentage='0.5' measure-ordering='alphabetic' measure-percentage='0.5' show-structure='true' />
</datasource>
</datasources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='Womens Clothing E-Commerce Reviews' name='federated.0588d5e1hu3h781bzv4160avu7sv' />
</datasources>
<datasource-dependencies datasource='federated.0588d5e1hu3h781bzv4160avu7sv'>
<column datatype='integer' name='[Clothing ID]' role='dimension' type='ordinal' />
<column datatype='integer' name='[Positive Feedback Count]' role='measure' type='quantitative' />
<column datatype='integer' name='[Recommended IND]' role='measure' type='quantitative' />
<column-instance column='[Clothing ID]' derivation='None' name='[none:Clothing ID:ok]' pivot='key' type='ordinal' />
<column-instance column='[Positive Feedback Count]' derivation='Sum' name='[sum:Positive Feedback Count:qk]' pivot='key' type='quantitative' />
<column-instance column='[Recommended IND]' derivation='Sum' name='[sum:Recommended IND:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='mark'>
<encoding attr='size-bar' field='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' field-type='quantitative' max-size='1' min-size='0.005' type='centersize' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Circle' />
<encodings>
<size column='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Positive Feedback Count:qk]' />
<text column='[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Clothing ID:ok]' />
<color column='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
<format attr='mark-labels-line-first' value='true' />
<format attr='mark-labels-line-last' value='true' />
<format attr='mark-labels-range-min' value='true' />
<format attr='mark-labels-range-max' value='true' />
<format attr='mark-labels-mode' value='all' />
<format attr='mark-labels-range-scope' value='pane' />
<format attr='mark-labels-range-field' value='' />
</style-rule>
</style>
</pane>
</panes>
<rows />
<cols />
</table>
</worksheet>
<worksheet name='Sheet 2'>
<table>
<view>
<datasources>
<datasource caption='Womens Clothing E-Commerce Reviews' name='federated.0588d5e1hu3h781bzv4160avu7sv' />
</datasources>
<datasource-dependencies datasource='federated.0588d5e1hu3h781bzv4160avu7sv'>
<column datatype='string' name='[Class Name]' role='dimension' type='nominal' />
<column datatype='integer' name='[Rating]' role='measure' type='quantitative' />
<column datatype='integer' name='[Recommended IND]' role='measure' type='quantitative' />
<column-instance column='[Class Name]' derivation='None' name='[none:Class Name:nk]' pivot='key' type='nominal' />
<column-instance column='[Rating]' derivation='Sum' name='[sum:Rating:qk]' pivot='key' type='quantitative' />
<column-instance column='[Recommended IND]' derivation='Sum' name='[sum:Recommended IND:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='mark'>
<encoding attr='size-bar' field='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' field-type='quantitative' max-size='1' min-size='0.005' type='centersize' />
</style-rule>
<style-rule element='refline'>
<format attr='stroke-color' id='refline0' value='#000000' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Circle' />
<encodings>
<size column='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Rating:qk]' />
<text column='[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Class Name:nk]' />
<lod column='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
<format attr='mark-labels-line-first' value='true' />
<format attr='mark-labels-line-last' value='true' />
<format attr='mark-labels-range-min' value='true' />
<format attr='mark-labels-range-max' value='true' />
<format attr='mark-labels-mode' value='all' />
<format attr='mark-labels-range-scope' value='pane' />
<format attr='mark-labels-range-field' value='' />
</style-rule>
</style>
</pane>
</panes>
<rows />
<cols />
</table>
</worksheet>
<worksheet name='Sheet 3'>
<table>
<view>
<datasources>
<datasource caption='Womens Clothing E-Commerce Reviews' name='federated.0588d5e1hu3h781bzv4160avu7sv' />
</datasources>
<datasource-dependencies datasource='federated.0588d5e1hu3h781bzv4160avu7sv'>
<column datatype='integer' name='[Clothing ID]' role='dimension' type='ordinal' />
<column datatype='integer' name='[Positive Feedback Count]' role='measure' type='quantitative' />
<column datatype='integer' name='[Recommended IND]' role='measure' type='quantitative' />
<column-instance column='[Clothing ID]' derivation='None' name='[none:Clothing ID:ok]' pivot='key' type='ordinal' />
<column-instance column='[Positive Feedback Count]' derivation='Sum' name='[sum:Positive Feedback Count:qk]' pivot='key' type='quantitative' />
<column-instance column='[Recommended IND]' derivation='Sum' name='[sum:Recommended IND:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='mark'>
<encoding attr='size-bar' field='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' field-type='quantitative' max-size='1' min-size='0.005' type='centersize' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='on' />
</view>
<mark class='Automatic' />
<encodings>
<size column='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Positive Feedback Count:qk]' />
<color column='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' />
<text column='[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Clothing ID:ok]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-show' value='true' />
<format attr='mark-labels-cull' value='true' />
<format attr='mark-labels-line-first' value='true' />
<format attr='mark-labels-line-last' value='true' />
<format attr='mark-labels-range-min' value='true' />
<format attr='mark-labels-range-max' value='true' />
<format attr='mark-labels-mode' value='all' />
<format attr='mark-labels-range-scope' value='pane' />
<format attr='mark-labels-range-field' value='' />
</style-rule>
</style>
</pane>
</panes>
<rows />
<cols />
</table>
</worksheet>
</worksheets>
<windows saved-dpi-scale-factor='1.25' source-height='37'>
<window class='worksheet' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='200'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='2147483647'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='200'>
<card pane-specification-id='0' param='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Class Name:nk]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Clothing ID:ok]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='worksheet' maximized='true' name='Sheet 2'>
<cards>
<edge name='left'>
<strip size='200'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='2147483647'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Class Name:nk]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Clothing ID:ok]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Division Name:nk]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Review Text:nk]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Title:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='worksheet' name='Sheet 3'>
<cards>
<edge name='left'>
<strip size='250'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='2147483647'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='250'>
<card pane-specification-id='0' param='[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Class Name:nk]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[none:Clothing ID:ok]</field>
<field>[federated.0588d5e1hu3h781bzv4160avu7sv].[sum:Recommended IND:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
</windows>
<thumbnails>
<thumbnail height='192' name='Sheet 1' width='192'>
iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAABJ0AAASdAHeZh94
AAAgAElEQVR4nOy9Z5Bl6Xnf9zv55nw79/TkvDliF7tLEgABEARdoElBhE1KlkmFooslqVSy
PshVLNsybZfkoHKVihJLFIOK2ULJBBG5WOwCiw3YndnJsXPf7pvjuSef4w+350739O3uO7Nx
Fv2vmprb9558nud9n/cJ/0cIgiBgD3v4MYX4YV/AHvbwYWJPAfbwY409BdjDjzX2FGAPP9aQ
P+wLuN9hux43Sw3emltjvtKk0jawXA9JFMnHwxweTXN6KsfRsQxhde9xf9Sw90buAUEQ0DJs
/uT1y3zz/DzLtTa7udLy8TCfe/AgX37qOCOJyAdynXvYHcKeG/TuYLsef/rGFf7DyxdomfZd
7x9RZb781An+zgsPoMnS+3CFe7gb7CnAXaDU6vI//MUrnFkovetjHRvP8C9+4Tn2ZRPvwZXt
4V6xpwBDYqna4jf+8K9ZqXfes2Pm42H+j6/8FMfGM+/ZMfdwd9hTgCFQbnf5e//+WyzX2+/5
sXPxML/9t3+a6SFnAj8IMByXqmFhex6KJJILh4goMoIgvOfX93HHngLsAsfz+Ef/8UXemF17
385xeDTN7/7q59CU7X0SDdPi9ZUSF8o1irqx5ffRaJgHR7I8NTlCQlPft2v9uGFPAXbBn75x
hX/5V2++7+f5jZ9+lP/6mVNbvnc8n+8vrfLifAHL83Y9TkiW+NT+SZ6dHkMW98I8u2HvCe2A
lmHxOy+d+0DO9c3z8zjuZgE3HJffP3+Nr99cGkr4AUzX42s3FvmD89cwHPf9uNSPFfYUYAf8
p7eu0+haH8i5rq7WeH12tf+35Xr8/vlrXK027ul4lysN/vDCdTx/b4LfCXsKsA083+cb5+Y+
0HN+/Z3Z259vLnKz3npXx7tea/LN2SX2rNztsacA22Cx2uJm6d5G33vF67OrtAyL5VaH11be
fawB4JXFVUrdrYvmPfSwpwDb4MJy5QM/Z8uwmS03eWmhgP8ejdpeEPDy4uruG/6YYk8BtsGN
4gc7+t/CtWKdK5X39twXy3VMd29BPAh7yXDboNIZ3mw4PDXGhOoxqwccTkeotnRG01EE3+PF
a0V++bnj/PFLFzCHONbbKyX8uHLvFz4AXcdlrWOwPxV/T4/7ccCeAmwD1/OH3vbmaoXUZIpU
SOT7V5Z5+NA4AQGxaIinDo5TbOhEVAnT3t2VudzsMBFPD/ytduMclpQhFYOVG/Pkj56kfvMy
UjxHSLLROxbjJx9GC219raXungIMwp4JtA0kcfi0gmOTeY6OZ7Fsj08en0RvNanoLuVam+ul
Ok4gIA95PG8H0z+WH8fpdqitljjw5KNULr+NGBvHLK1gdHV8x942LXsvJjAYezPANhhNRIfe
9sriKlfWF5rXV6u9L8u3k+a+887wCXTjqe3PK2saAELgYjQaKKkZwkqXpuUxvu8IglWmulxl
8vDoln3FvTyhgdibAbbBwZHUh3LeR6by2/ziU7p5E89okT36IK1inYnjB/Acl4Of+CRS4FBv
CEwcGhm4dyqkEQQBludSMbqUDZ2uY//Yxwj2ZoBt8Oj+wYL0fiIbC/HC4SnOv9Uc8KvI2KlH
+n9NnOzlDY2dfHj9mzBT2bGBx5UEgXw0xLlKkcV2E8vrmUOyKDIaiXEqO0JcUX8ss0n3ZoBt
MJaMcjCf/EDP+dC+EaaSMcZj723J5GgszOVakWuNKqbnEgAB4Pg+y50WL68s0LCG8VF9/LCn
ANtAEkX+i0ePfGDnE4Cff+wooiDw9ORWG/7dIBuVqJjdbX83XIe3SgVcf3jP18cFewqwA774
yCEy0dAHcq5TUzke3d8T/Ccm8oxGw+/JcUejIaLa7q+5bpmUDf09Oef9hD0F2AGxkMrf+8mH
PpBzffrUfmSp9zpkUeRvnDyEJr271xOWJT59cAIvGG5kr5o/fjlDewqwC7746GGeOzb1vp7j
2HiGX3ji6KbvphMxfunUEZR7LGpRRZGvnD5CPjL8TOLtmUB7uBOiIPAbn3uEmdz7w96Qj4f5
37/8AuoAipST+TS/9sgJMmHtro45Fg3zDx4/xbFsipiqDh0DSKh3d56PA/ZKInfBbKvCfLuK
ZQb8h29cY648yEV5bxhNRPhXv/STHN2FFcJwXF5aKPBGoYS+Q0Q3oSo8OTnCC/sm+pxDfhDw
vZV5Ksb2i2AATZL49PQhwrKMGwT4foAkCkiC8LF2j36sFcAPAspGh7LZQRYlJiIJ4op2Vy/0
Un2V1W6LsKRwNDbG//zVH/LqjcK7vrZTkzn+xS88x0Q6tu02QRBguC5X61VW9Q4d26Ftubge
aKJCQE9wc5EQM8k4+5PxgWRbFaPL9wuLOP7gXCQBOJTMYjkw22zRsiw8P0AWRTJhjUOpJCdy
GcLyxy9s9LFVgCAImG1Xud68ndcvCyKP56dJacPbxV3X5ly1gCrKHE+PoIoyX/3RdX77pXdo
3kO5ZDyk8svPnuIrnzgx0OzZiIrR5XvLS3ScrQx0Y5Eoz09NE5Z3zxwNgoCiofN2qYDuOJt+
kwUR2xUodiycHdYAEUXmJ6YnOZ5Nf6xmhI+tAlieyw/W5rDvGPVGwjEeyU4OfIl+EFA1dZq2
SVhWGA3HmG3VuNnq5ffEFY2nR2eQBIGmafHHr13h2xfmWa7uzg2qhRRGR+Icm8lj+j6256FK
EqPRMMeySZ6dHiMXue1yNV2Xr8/fpGVvT784E0/w/NS+oWz8IAhwfJ9VvU3V7OIHAXFV43yp
zkJz+FylpydGeWZy/GOjBPe9AnhBQMe20R0HURCIqyoRWUZ3bV4tzm+prEooIY4mcxS7HZzA
I61FmIgmkAWRy/USC+16X5gzWhgEgbrVs58lQeRUepwb9Qaregfb8xEFcEwfq+PR7thU2gam
46LJErl4mIlMnGXLZKnbRdghIzSiyPzM4Wme3zeOKAhcqVV5fW1nU0sUBD6//yC58N1HjoMg
4JXlAm+u3n3p5Wf2T/PgSO6u9/so4r5VANf3uVStcqFSpWGafaGVBIHRSIQH8jkKZo2uu3nK
D4kytufhbxizs6EIBxNZ3igubRnJs6EITdvEC3w8T6DadQaaCrIo8tTYOMczmf7o2LEd/t2Z
K3dV3P705Ah/89QhflBYZr61+4L7ybEJTmSyQx//Ftb0Ln906do9lV6GJIm/9cBxYur9T8B1
X65quo7DN+fnKXS2Ri69IKCg6xR0nYl4hHhIxF0PBEVlFcNxNgk/0DcJBolCRFY4lRllpdPh
1ZUC3jYC4/o+r60WiKkq0/E4tufxb9++zGzj7ugUX1spoUoimdhwzNHuHSae7XlYvktU3tn9
+aPV4j3XHZuexzulKs9Ojd/T/h8l3HdxAMfz+Nrs7EDhvxOFdpfAVXkkN8mT+X0cSea3CH//
uL6HwFaBSaghIrLKXKO1rfDfghcEnC0V8Xyfb8+u3LXw38LLi2ustoeLym703a/oTb5buMEr
q3O8ujaP6Q12mVqux0Lr3fGcXqvV39X+HxXcVwoQBAE/WiveFc3HtXoDw/bJhCKo4vajakIJ
sT+e3qQC2VBvfdB1HErd4fJkqoZBoaPz3YV35yq9Um4PVMiNiCkqY5FeAY3r+1xplPtK2nIs
FtqDhbRpW5h3sNBVbl5k4do8RrXAxVdeplapcf2Hr3Dz/GVqC9e58oOXaTZvP/eaaeEMyVb3
UcZ9pQCW53GxWr3r/c6USgRBQEINEVO22q0CMBqJk1AiKIQxbYGMGueh7ASyIGJ67o4uwo1w
g4BXl9e2CNjdomk6JJXt3bWSIPBALk/bsWlaJm7gb8nmtDyXqtHlUq3MhWqJQqe9zi699dri
+XFsvUlpscDRTzxB+fJbBOExzHKB2NRBkpkwVnezR8p4l/f4UcB9tQZY1fVNHJmtapVENovT
beEQIiR7rC6uMXFoP77dpaN7JDMJinqXrusSUWQezE5wrlro+9YlQQRf5qvXFqkat3Pir1Q6
vLFS5bnpcWaScURB2NUEgt6IMtd4b3oIaKLKk2NJLlTKdNdpTQQgqijIosDZ8mrfoIspKoq8
YcYIYKnd4UJl84CRDYU5kNgaeVZCofXr9+k2m4jxKWIhg0XdpnzlHFruELnRzfURw9Y5f5Rx
XylAw7wdeDKbZc6+/BrPf+mLLJ/5Pu7IY1C9QXosycJsGbd0nq6Q48GnH+q7SqOKQlzVeCw/
zblqgbQWYa1t82phjUHje8dx+PrsIg+NZIkqyo4++VsIKwq6PThAtvyj72PqXfLHH6K5PI+H
giqY+EqSqdMnt/jWS7rBZw9OcTCZpm6a2J5LSJY5U17bUsDScWxw4FAqRVLTmGs2qQzI7qya
Bh27iCjAbdpQn8LVK3iWSe7BRyjeuM7+UycpXjnH8eeew6osUlu4jhZ+gPh6f7OQJH0sIsP3
1R1s9FqEknlGxnv1s1PHjrPQgEDRyE5PsvC1VzF8G9PqwtMP9fcNggBBENBdi7Zr0rZdfrTS
HCj8G/FOqcr+1PYpCxtxOJXmSnG79UKAJAd0dR9ZsAgkleZiGSXWxfZOot3xNhzfRxAENEli
LNqz9W826ztWbxX1LkeSWd4qFrfdxvJdVFnAdG49T5GpBx7t/77/wQcBbn+XOsmdBaIzyfjH
Ihh2X60B4hv8znqlQG11lcLCEvOXrlNbuEE8EeP8y2c58qmf5pNf/DzHHjkN9MyGgtGg5fQE
JyQp5LQoC3VzaFdgWTeZju/MqzMRi/FgPo8qDV5sx/KjBIFKOBTgEsI1HSKZGAIBgy5DEra6
OVc7O3tvOo7NQru5632lQvfuwxeAB/Ifj0DYfTUDjMeiSOu2eDQ3wTNf+lLvh5np/jZjR46v
f1KYPnoAgJiq4Hgu1xtVEqqGANheQLVrQeCzfP4MuWMPY6zNUW9ajO8bYeXaTdIzR+mu3cQV
Yxx44ATH0lnSoRBXa7VNaxFVFDmSTvPY6BiSIDAeC7Pa2Zp9mZo5Smqml/efmpjY9X5l2edq
o4wfBKiizFQsOdRifJhtDqeT4HdY03fOEh2EI5kU+xLDzYgfddxXChBTFA6mklyv3x13ZlQT
+vbwWreNJkkciOVxgxK+a+PZXUzToVZukoyrmL5KMpeiWSwyMjnN4oVreJygbTs8MTrGqWyO
UrdL13UISzIjkQhRRaFuG1yur5EIv3vTQBRgLBZirnXblTnfrqOKOye/iQjMxJNcb9R2nAXG
ozGOpnL8yeVrO6ZY34lsOMQTY6Os6l0UQSQRUlFF8b41h+4rBRAEgU9MTLDS7vS9IrshFVJQ
pc0vx/I85td95KISIhq/RUbVE5ggAElWce0GgpBDpJeCLK2/5K5rUTJ7aQqjkd4CWRAELM/F
9FwOZ+O8XWjSsjanYdwNJuJhTN9iYyjA8T1kQURE2DagNx6LEeAzHo2xso25lA2FmYjGkUWR
Xzx+mL+8MU/F2J0VQhJELNfn985fxfF7eVBxVeV0PsNTEyOE5fuvUd99tQaA3gP/mYMHiAzh
gRiNRHhqfIxB70QUA8KyhGu0qJaa1JYWyIykaFsiWtClulYiOzVJZX4OLTOGKsFoNILhOpyp
rFCzutSsLm9XVjBch0KnxXK7RVjU2B9P8/lD01tPOiQkQeDTBycYFAeTRIHHRscRB/wYVWRM
3+RsdQUnMMmEtlZ4pTSNZ8ankEURPwiIqQq/dPIoz09PEFcHzy7pkEZcVenYDkXdwPI8/CDA
9QPqpsUrS6v84YVrNK27bxz+YeO+S4YLgoDVbovlTouVlkFRN7b45zVJ4nQux2NjoxiuzcuF
rZ1e9sVSLDdtzpaG6wMwGYvyK6ePsdZtc7a6OcobV0KUurdtaUUU+cnJA/zF5QXeXC3f9T3+
l8cP8ORkju+tzG4Z6ccjcY6nR7lSrXGhWsELfPLhEKdyOZzAYbFz22QaiySYiqQpGR28IKBl
GzQdA02SeSAzxuV6EcNz2B/PcDjRW9RWDJOqYWJ7HiFZIh8JM9/s8LXr87t6y6bjUb5y+ija
Nk6AjyLuKxMIwPAcLtZ7LUsnkyE+M7OfVV2nZdkU9BZdzyamyEiSj+E6xJXeiDy/IS1Ak2RS
Wojx8d56YjcbWBFFfmpmCkEQiKsaoiD07WuBXvrDRji+z3y7wZdPHcT2Xc4V67vWC0Bv5P/C
kX28MDOOABxMZrjR3BDICgTm6ybfmb2AvYG9erXl0DQCjuY284qKCBSNFh3HZiwSo2T2slIt
z+VCbQ3b7933it5kOpbC9FzSIW1TIb3hunx/aXVX4QdYautcKtd5ZOz+8RBJv/mbv/mbH/ZF
3A2CIGBFb+ITEJFVJmNJcuEwVVunaLQRBXADn6ZtstRuMh6Nk1A1DM8mE4owHUsRELDQqVOz
dJ4en2Ku0cbexnOiiCJPT+YIq5AJRQlg3dZ3iMoqR1J5ykZ3yywUkRVcXETF5ngmS0k3d0wd
GI2G+VsPHeXJiXyPr1MQyIWiZEIRwrJMRApxdq3FcnvruQKgYdksNHVSIZWwIqJJMgGw1GnS
cWxKXR1VknADHxGBA4kMDcsgAJJqiBW9yUKnRs3qMhZO9DNJF5ptfnQXNQNe4PNAPnPfrAXu
uxlAkWSeGNnHbKtGQW/xcmGO4+kRrje25gjZvsfZyiq+4Pa4cYQAy5fQ3Z6tankuI5EQ/80D
x/lhYY1L1Trd9dlAFUUyEZVD6TghRcD2PBzf40xliY5rI4kCpzKjpLUIRV1nsbM5dz8ky1ws
11htm8h4TMQimK5H13HJhDTCioQiSYxHw5zIpzmZS2F5Lq+XlmhaJoooMhVLcjiZIxOK8Pvn
r9LcZVHt+gFXSl0+c2iUutPe5CjwCRgNxzFcl4phcKPRxAtE4qrCZDTFxXqP3brlmHRcCxAI
STJl3Rhq9rqFmtErrdwuFvJRw32nAAIQUzQc3+//u1wrbevyq1smCa33MlzfZ7nVQQwUyp0u
+xJJREEkosl8Zv80k0mVgt5CEgQUUaXY1SmbHTB7BS9eAJ115fGCgJLRoePYxFSFiWicumkg
CiI13eVPzi/RMAcvChuWzcF0lp89MtMvg9Qdm9dLS/3Cddfzud6s4vg+niuz3B4uG9X2fa6U
O3z20BQrnRaLndsu47lWi6a1OU2jYVnUDIuwKoAQEJVVLtTW0B0bSRAwrbsTkcFVFR9d3HcK
cAuj4RilbgdREBiLxGlYg/NvNFHiYHyEr16d42alS8d2N+TA1PgzdZmHx7J89tBkT9iFAEGQ
KN6R/uz6PjebDZIhCS/wERDQXbu/6MyHojw7vp//eOE6l8qNHcXADwJ+tFrhcqXBV04f5qHR
LEWjM5C1YbHdoNi6fTTfc9CbbSLxKHqjiaiE0FQRy/aIJpMIAiy0OmiiyonMCCFZpuPYVAyD
mjn4GemuAyhkIgrjkSTXGr2FuxcEeIKNAEOLdSYUuq861N+XCqA7Fit6k0wozKnMKKooM99q
bCkACYKAthnwf//wCjVj8Mtv2w6vLK7xxkqJT+7P8fhkel1Qtm7v+j7T0TyqJBKVVSqmThV9
/Tg2//7sVW7cRfmj7rj87jtX+dWHjxPWBouYF/gU9ds++oW3XkeNKJTJEY8EFOYusu/YAWpL
c6SOPE42F8f1AyqGyf5knKOpPC3bYrY5O/D4/WtxHfbLScLSZldoLhwmodlDuziPZ1O4vocX
BKiShMhHm1fovlFVPwhY67ZZaNdZ7DSpWV3qVhfP77EdnMyMoNxR8FLrenzj6tq2wr8Rlufz
1zdLXCmaaNL244IsiGS0CHXLoKA3icgqEVnhUrF7V8J/C64f8Hvnrm0bNBOFzR5/RZFplhuE
k0k0xWPi1COEImHa9Q7qhvwe1/dxfQ/X96kaxlDMzw3LIh+OMhlNIiCgiDLH0nmenRrbpTSn
h0xYxfANvrV4k28v3uS7y3Msdpof6SYcH+kZwA8CbN9FE2XOVgqsdnuRTRGIKioCAt8vLNMw
eyOkJklMxhOktRCOB//m6rUde24Nwn++usCXTk0jCFunfU2SWNJrzHcqpNQwgiCQUkMsttpc
Kt17V3fD9bhZ1ckmlC1F/EeSWRZrLuXu+iwgSSjhCHgOjbbJ9OkUa5fPEopFcS0bYr3gl+nZ
vLRyE0EQiMnD8SA5vtdbqNsBta6H6dqsNOdIhUIcSMeYb3Q2mI+bkdQUxhIKZfO26diyLd4u
FXB8j0PJ7FBK9EHjIx0Iu1wvUug2GQsnWGhvtqunYylu1BpbUiJkUeRz+w/yx+fn+OHyvXVb
z0dCfPmhaZY6t7MqVVHiRCZHze7gBz4PZ6e40ihi+x7vrHQ49y77Cs8kY/ydR45wpVHC9X0U
UWJfLMVkNMG355d5vTD8vaRDGo9NxmnavfiEhER1mwX5RuRDEeqmPXA9JQAxWaNj+ZS6vRlF
EARiisLJXJpEWKDQHTwI3KJdFBCYbdX6NOz5cJSDicyH6jH6yM0At/RREATaTi9duevacMdS
bKXdHpgP5Po+rxVWeWv13ju9l7smuAovTMxQNbs0bYua2eXSurdJESUuUqLt9uhSZuvvvgJs
sdnhTHkFSQw4mMhhewEVo0vbtjmaSfD2WmXossynJ0ZJhYW+AuxPpDC9+hZWuDuxpne3jVUE
QMe1eG7fFLlwhI7joIgi6ZCGKkm8vDK/7XEtz6NidLnaKNPaUCxUNbus6i2eHZ9B3cHsfD/x
kVEAPwhYaNcpdJsICEzHUuyLpblcX+NoMk9C7fSjokk1hBBIVLex7S+W65sipfeCc6UaT0zm
cQOfK/VKn1oFevGFxU6TqKJwKJFHtwelOwQUL57Bk+MkEiq11RL5IydpzF1Gy+8jMz5yx9YQ
eDKSFHCuUtoUmBMFgUPZCFfLnV29MUczSU5kU6y0dTxHQxRA8FWOp3KcraxtW9YZkRRKu7RJ
CoCL1QpfPHSYTPg2i90wNRXXGpVNwn8LTdviaqPC6czoh7JY/sgowGKnzrXmbUG6VC8SV1R8
AkpmBxBIKL2HfiSZo2oYzDGYOKpjbZ0ZPLPJ4htvIWgRNNXH1rvkjh5i+fwSoyePkRrf3JZo
td3F9X3OV4ubhH8jdMdhvtncjmgFvdYBUcfTJQQxhNNcQ8nO0C0ublEAAAKZlt3dEpX2gwBJ
8nhsPMPFcnPgKC0KsC8Rx/Pgt149u6le4UWKhGSJ8XiIXEzG35DYoIoSh5JpGpZNqbt7RmjD
sujYNqnQbQUQ6JkzNWswW4cmSZje9rPPmt7hdOa9bQs1LD4yClDQt9qPkiCSVCJcrlU2Cdlr
xSUyWhhVFLcIiyQI5EIRZtn8MgRBIvBdhCCAwEdSAlpFnWgqRLda3aIApuvRsi3a29T33kLN
2qagxLMIJA1ZsMmdfAzFrTD7+jXSx09tO4oXux3CocG/BkBEE/i7D5/kTLHCfLNN23ZQJZHJ
WJSwLPPK4iqdbfKaTNdjrq5T6sh87vAk+YiGIklkQ2EissKLS4s73uct+OscoxshCAKHkhkK
eov2HUS+IgLH03muN7Y3Sf0hO9i8H/jIKMAgFrOWbWG43kCBqVkGuWgIw/apr0/dqiSQDqt0
za2jjWfrIKr4rkNkYpzmygqJfIZ2QccbwL4cVWWs9Y6KO0EWBVRJ3GpySVFiSQVPSuPW1ygX
Ssw8+wz16xeIje0beCxll7ehuzZhReKFfRO8sOH7hWabf3fmMtYQZp/uuHz9xgp//9GTm7pR
xpTdWaah52QIDUhFVyWJB3PjXG9U1qkke1Hlo6ksU7EEFUPve/HuRDr03nbFvBt8ZBRgXyzN
+dpq/2+BHgXfTgLYcSx+avogBL3szIuNVZq2iShvHQWV+CgHn789yif39TpAJsYGlybOJGOE
JHnXKGgqpDEVjw5ggRMZPXW70Dw+PgPA2AOPDTxOXFWYTsS2FRKgXwyzEY7v88cXbw4l/LfQ
dVz+9NJNfv3xU/2o7b5EgguVyq4Knw+HgQDDdQjLCn4QcLla5Uy5hLHulMiGQjw1PsF4NNYf
2E5k8pRNfUs8QhFFjqfzH1qw7EMNhAVBgOt7tG2LiKxwLDVCPhQlH4oSVVQIdn4oAVAzDWKq
SkLT2B/PEJVVnhgfJbrbcLoDBOCRsRwJVSOp7dwlciqa4KnJd99U+0QuxUw8uaOvfDQS2zJT
nl2rDFXNdSeW2zpXKrddt6ORKAeTqR33kUURVYHvFWZ5ceUmN5tV3imXeHW10Bd+gKpp8p2F
hU3u1IQa4unRaRKqhiSIyKJIPhzl2fGZD7U104eiAEEQYHkul+tlXlye5aWVWV5emeditUjX
cRmP9ARhu7K/jdjogRgJxVBFiUK3ydF8dIe9dsbBdJx0RGKhXWc8Etu2UV0+HOVAIs0TE3ny
kXfXTvVELs1YJMZUbHAvsoSqcTSV3TRSBkHAO8W7Z8q7hXdKt/cV18tNZ+KJgUqoiCKnshlM
zyag99yvNiqcLQ+OT9i+z1vFtfVBzudircjb5QKm66KIIsdSOT4xtu+umpW8H7irYdJyPc6X
6lwuNyh0DDqWQ0CvFG86GeV4LsmpfIrwLqNv27F4o7i8pfOJ7wdUzC5Vs0su3OPyvLPBxZ1I
qBodx6KxnkLccWy8wOfZmTyrLZu1zt21/lQkgVMTEX5UXu5/F1VUVFGmbvWqzzRJYjKaYCKa
oGXbhGWZr5w+zP/z5sWh2OPuxMOjWR4fzyEIAo/mJ0ioGvOtBpbnIQoCEVllIpKgYpiktaBf
g+wGAWv65vuzawXmr8wRTmZRBQPTlcmPZynOzxPKTDF+6Pb6Y7m1OeEvJMv81L59LLbbzDYb
NC0L2/N6joVICPWO12p7Hu52oWGg1O3i+D5nKgWK3Q2xkgAu18sEwNHUh1s8M5QCLLd0/r+r
S7w0v7Z99dRS7z9NEvnJA+P8/IkZJuJbFzem6w4U/o0IgLLRJbRLcCSjhWnaJpfrpf5cEZEV
DiVSTMdSZB6L8n+9dmno4nRFFPjZYxPIyubtu67N0VyOJ8KT6I7DlVqNs6Uqr9mmL6MAACAA
SURBVLk98ikBSIdCPLMvz6uL5btSghO5FL/84JH+yC6vj46Hk1mu1mqcK1dYNltcobV+jSLT
8ThPjo8SU1SsO12ivoNj28hWh8bKEqF0DunIIbANAmHzTGYMCCRKosiBZJLpeJxXCytcq/ey
XZu2zXxTIBVS0JRe87xkKEJZr+14fxVD3yz8G3C9UWVfLEloiDZP7xd2lDDL9fijC7P85bXl
ocleLc/nGzdW+O7cKj9zZIqvPHCwPyMEQcDNZnVH4d8Ix/dIqNrAAEqPt3+EN0rLmwylrusQ
VzXOVQvULZOfOJLkzcU2q62d3Zmj0TB/++Ej+KK1qXzyFpq2SVhS+fbC/BaKxN5apGeHnxyN
UWja2wbpbkGRRJ6bHuULR2a21NAGwNvFEm8Vt9Y5OL7PbLPJmq7zwvQUqiRibvD567UGqX0H
6K4tE06nCYclmrUG6f0HqRbKcPB2z2NNkljRm1QMnbiqsS+WRhZFgiDgzbW1vvDfghcEVA2b
p1O9RiCW53O52tg20S4f6TUX2Q5e4NOyrY+mApR0g3/16kUulu8tx8XyfP7TlUUulRv8s08+
SD4awg18Vtb9/YHvESAiEOA4Loqq4No2kqIiCOB7PsgSY+EYBxJpltpNdMcGQWAkHOVkOo/t
ewO7oF+ul7DWU6MjqsRnjmZJiileXSpxtdrAcHreJVkUmEyEeG56gmemRwkrMrPNbWzqAL45
P0dnl3QCQQx4ZiZHXArzeqHEYrPTFxBREEiFVPanoowkBdLhHsWKJt2eKYMgYLbR5K1icdvE
M4Cu6/Ly8gpRVaZl376m9JEHEFdXyD36JBI23bZFNBGmWa4w8/CDm44RVgUu1dYIgKLRxvN9
Didz650ptx/ZL1ernMzmiCoSD+RynCltXQfIoshYVFuvLtsew/Ywfr8wUAFKusE/f/EMhfbd
s4bdiavVFv/9d37E//bpx9EUMD2XIAi49J2vEsw8h9q4QUdvo8RGsbodPEFhaizG3EKVT/70
8zRtixOZnnfoncoaVaPLSruF5bqcyo4MXCeootRXAOiNXEdycY5k48QUlaZlc7a6wkQ0xnK3
wYG41m8vOhVLsdBu9MsmoddZpqSbuwr/LSy0mnzhYJZnph+g6zi8Uy5SNnSSmsbJbJ6S2WK1
26LrOtxsVXg8f9su94KAN9d2Fv5b0B1nMyM0gCCSnLhFyaKSCPUY3DJTW2MPk4nQptmzbnXX
66mtHdOnO46D6bpEFIVHR0ZRRYl3yqX+TJQLh3l4JM9su4i0ns496HZUUaLtWMyuk3+NR2JM
xpIfqFJsUYCu4/Jbr5x/T4T/Fkq6yf/4vbP8s+dP9QlqDz/0ILMtARuFR3/yaV7/2lsIYZlW
s8rkC09RLr8K9KZJz/f5UXFlU6h9rdsbWU9nRjlfK+L4vQXjkWSWpBrirfJKvzwvIiu8WVrC
9T0OJ3McSmQ5kcnTsg00UeFqrc47xRqG6yKLvTpZTVJJaioJVWMimuT/vXb9ru75UrXKaCTK
mcoKddtAlKDtGrxRXCSp3Xb7xZTNLsCaaVI3h3drxjWZuKrQtu+OhGs0GuaZyXEu1df6wmm4
Li+tzBKTd3ZLSoLQjx80uxaltQ6rcy0uFioYloMmybwYnUWLCDx1aJKJkRhVb7M8iYKAIMA7
lbX+dwW9RcXs8nDug+tCuUUB/vDcTa7X7j23fTvMNTr88fl5jo4puL7NtTMXWLEzHJqM8Po3
X2Xqkcepzl4hevAgCxfeYfHaDQ49/Dj7YkmatkV9QJ5J1eySNkMcSqQJfImr1Sbfm6vQtm0s
r8eAfDAdJx+PMdvumTbFbhtBCKiaXWqGPbA/7i0bf19c5MHseM8b0p9lPN75zl9jWgJHHztO
4cZNtNQUvl6k1fF49FPPIwLlbpelTmPLdQf0qtBOZ0coG11KuslC8+Z6dVuepmXdVVWt7Xl8
8cgMf3r55o4emY1QJZGfOzKDJqoklTi6YzIei1MxdUzHRhREkpq2pX74FiZiMZbKLf7glfO8
dGmRzg6p1i+dXSasypw+lOO5h6aYyMWIKxqZUJhzG4T/FhbaDfbH06RDH4x7dJMCzNXbfO3a
8nbbvmt8f6HEeGqMiCbzwOe+xAN3/D45me9/njndozXPh6O4/vYRYQGB15Yr3Kh1tgqADbVu
ncvlNgcyGiMxlZiqMt+u4XsSK62dGQ8W222+tTDPqewGV10g4Ls2jisSz2Rx9LNEJ2Joik6t
UUcIAKEnmLUB/PzQm9Wals2Nxu16g7plsqZ3mImnd7iiQfcPx3MpfvHEIf7i8uy29C63IAq9
0f+vZhfpbJg1okqbXFRlIqFxIp2DlMi35udw71iEywi8dX6V33zjZcwhOUUN2+XNy2ucu17m
bz57kr/7qUcoGNv3Vq5bxgevAEEQ8OeX5u/Jjz0sHD/g/GqHp/fHhxrlEqrGWDSOHwRokrzJ
rgeQRYnXl2u7dmTRbZeLay7Th9KAR0TSuNrYvbk19HzZirhhQehbeIFKWLIprpWJj4zTKS3h
KTJS4OAGoAigyfLAnBnocY9eqVW3eHh012Gt295EvLUbEpqKJkk8OpZjIhbhazcWuVrdWpQv
CQIJTcEnGNjoQ3dc9IZLsW0xHc1wNJPgi4cOc7ZUomx0EQWBUCDxR9+5yPWVnV2f28FyPX7v
e+c5M1fkH//8k9tut1NJ6nuNfkVYtWvyq//51aGLLu4VqiTyD54+gO7tHKBSRYmnRqfJhiPr
ZFgt3imv9U0RVZQodzxu1oajC4He6PfUviQgUBiyCyP0hCcIgv5o6NoWfiAgyyK2ZaOGQriW
iSCrKOsu30xY4Ug6yYre3iLMUVmjuE2jv6ii4LriUF0wAU5kU+RiCuPhBLlQL/pdMy3mGm3q
Ro9cNxsOEZJE/vLGwq4zBPS8Y18+cZgDqQRBEOADDd3k13/nG9wovjfdIQ+MJvkbnz2Gom2O
TURlhZ+YOrilvvv9Qv/sZ9Zq77vwA9iej2PLHElmkYXBKQZhSeZ4Ok9UUQnW+/eankNYlYiq
EicyeU6mx1ho3N1C3Q9gue6yceZursxx7uWXKa5WuPbaD7j8o3MUrpzn4muv0zV6JoIXBGTD
t6dkWdVQNRVRkglFIoiiiBqO9IVfAA4kUz36dFnuLfgAQegtyI+mt49+qqLEU+Nj26ZfbEQ2
HCKk+pSMNjfbFfx1Yc2ENB4fz/OZg1N85sAUD+QzvLK8NpTwQ69Q/y9vLGC5HoIg4Hk+v/ln
L79nwg8wV2zy9VfmiMs9qkkRgaiscCIzQhDwgRXS96kR/+r6Mjdq76537LCIayo/d2Q/Y9E4
qighCQIhWSa73sq06zkUjQ7z7To+oLsW15plvKCXHSQJAstNm/nm3ZcitiyHjSTItaU59G4X
QYkTDUOj3gXPwHV8slP7UOSeID6UH6FjO9v23t2I0WgIGxvrFj2IKLEvnqLjWvgENGyDwBcG
DjhH0xkOJFIkVJXlTntbkzQTCvHZ/TOoskjTNrGcgPlWiyu1CsudFq4fkNR6wnW1Vuettbsj
6bU8j2RIZSIW5c9fu8Kf/PDyXe0/DIqNLqdHRvjCqaOIQi/YuKq3KOhNoopKVFbfd29Qf5hZ
bg435TqdJr4XEPgudqcngFarFyyz6yXM9u5CudLSEQSBpBriZGaEZ8ZneG7iAIeSWeqW0TcZ
vCDgWqPCjebmYoqmbXKjvrkazG5XmX3zNZq1FrX5qyxdvYFZX+PGm2/iuHe2D93QabLe5sCD
p+hUi6SmDhOYDfKHT3HwaJ6lG7e9FBFF5vMHDqynA2+P07kcU4nNiXi9AODt63V8j8l4lOgd
OfhTsTjH1hPejqRT/PyRwxzLpHtdIQWhX4P7xNgoXzpyiEw4xGg4iWEJrHYMVvUOdcukoHd4
fW2FF5fmMV2Xa7XNz8rRm5QWlgiA5uoinWYH37Xo3sE+d63aoNo2+O3vnNnxnt8NfufFdyg1
e4Ods+7sMDyX89W1XfPA3gv0FWA33kmAwOlSeuv72KaHvjxH7cZV3E6N1R+9AdjUZxdoXb+4
K5Pwdrk5ZUMfuDC907sTVzU69uaRuLWyiJpIUVu6wfzbF8D3WZtbYv+pfRSuLW3a1nFvH+/g
ww+xemOZQw+eZO3aRUaOnkZydZYLNodO9GoFRHq5PjFV5YuHDvPsxCS5cK8iTRIEVEkgE9b4
3P79fGJ8YmAO050L4owW5lPTB3hydILpeJwnRsc5lr7dvlQQBLLhMJ/aN83PHT7A6dEkR3IR
Hh5L8chonpAs9xjmigWq23ibil2dt0trVO5Yb8yeOYPXLrBw5gyLs2u4jkP5+iWWrt3YtF3N
tPjz16/QGoJX6V7RMW3+4NXzW9ZJludiuPfeYGRY9N/KMF4HQYmQmOrlkkSnD2M0zyDHMkTz
WcBEjuSQaOGzc571dueStpnuxiMJVEmkbHYIgoCorGxJ2fVcHykiY3cdIrlJRKOK7soDU3tT
WhiXXlqvGktx7IlekcqBRx7vb5MYvZ0zMxqNklzPWZdFkVO5HCezWbpuj2a8bvUUd75TJamp
7I9nej71dXNpJBzjcCLLpUYRw3WIyApLep1lvcGBRBYnMKlaAXMdk9Fwzyz0g4BDiRxN2+RS
o9j3gC3rTUzP5ZHsJG3bYqm9c8ymx5h3RxGKIlCvtJBcj8jMMdauX+XoYw+iX9qsAJ7v8423
7y4AeC945fwyj5zOb2oIIgkiJd3krdUaZd3A8X2iisxUIsbRTJKk9t6YR30FiN2Z6zoAntGi
XSigeFFs2cIor6EXCxjlNVqFCQJrFVtJsNv6PbJNuvRENMH1RnXT1CcisD+eJqmFOMEo8+0q
K3qDVEjdFP1MTk1TuD5HeuYIbrOA6arsH00wd3GRmUc2V2GdymVp2l3mWoOL6jdCEgSeGNsa
mRQEgYbdpWbdNht01+Zyo8STI/t4Zmw/N5oVOo6FIgrMtqsIQC4UwQ+CfsfKhXaNiKyhr+fM
3KIycXx/fRthi/u3YuoYnkPdMnd1W3tBwJ39rBUthOsJ5I8donD1OrHRcVavXKS2ssbkyQfQ
1N4OzY5JsTG8l+1eUWubYIkIIb9fa7DQMPnB/I0tg+VbaxXCssQT4yO8MDO+rat5WPT3Ho9H
uFrdeTSRwgkmnvt8/+/EwVMAREfXywonxoc66fiANGmAkCTzaH6S89U1HN8jqqgcS+dJaCH8
wGe506Rs6MTkEAdSCksb8tlDqREOPrFemTVy25Q4nBnbfA+CwOF0goiSwVxwWdW3f8GSIPD8
1PS2dn9zAI2I7ti4vsdsq4LhOUiiQMexsDwXN/AxXJuRcBxN7D36qNLjGM2FonRdG8/3mY6l
mW/XUESJjBYdmFHZdW0cbzgbeTwWoWbcVvbph5/qf06PT/Y/T27OlcPSnaHjEe8WgS7yzP5p
zhTLvFGo0LG3vzfD9Xh5aZX5ZptfOnWYhHbvLV/7CnA8l+Sl+a2h6fcDJ/PJTX+7vs+VWo2r
tTp10ySgl5u/PxFGESQEYElvcrV5O+tQUiTCsrRj04lBOJVP96fPz+4/wPlKmUvV6pbceAGB
qKJyoVLhRqPBVDzOoWQSTZL6s0FsQClfWFaomDoV67YJlNbC/eQ6N/BpOyYpLUzDNqhbXaai
KbJalMVOjYbb+84PenW3q14TRRQ3eYxSapirjRKSIPXbxm4HSRB4emKc2bo+MP9/OyhijwB4
GESjUR6dSlOsN/GVMEnJY67pcGw0wUqxwmJz99ymtUaHtuXxw6XK0O90sdXhzy7P8isPHEWR
7q24se8GDcsyf3X9/UuDuAVREPiVhw6TCfeER3ccvj43z6VqFd3pjTi3GrBVDIOrtToxRaVh
dzDu4JY5kEzdFStbTJH58qnDhGSZIAgwPQcncJiOxzieyTEdj5MNR6gavW4uXdelbTvUTYuF
Vou5ZotcOExsvSIrKit0HLsv3KoooYoiHdckJCn9602pEbzAxw18ZEFEFWVAoO308n5s36Nq
dXADn7QWoWF3iSoaCTVE17V5KDOJG/Qa06W1MA9mxvGDgLii4QfCwHqJW9ifSHEymyWiyFyv
7W7y3cJPzUyyWmzyzsLulIyJZJzJmIKAxNGpDJbtMrtaxZdUIpJHtbv7YvbIeIZF19q1juJO
1E2LqCozFY/e05qgrzaTiQgn7hiZ3w8czsSZTkb6taLfmp9nbQczxPF9vru0tdmELIo8MT7K
Zw5MbbPnZsQUmf/q9BGS69Ol7tr8cG2B680K15pl1roNxqIxLlWr26Y9NyyLb84vUF3P1pRF
iYeyE+TDEfLhCKczY2iy3Cv6FkRSapiMFqGyzoYwFk4wHkmuX8/t0TWlhsmHYlher5ONFwR0
HItit4Xlueiutd7EzicsyRSNNnPtGteaFXIRjVx4sEkZkRUUUeSVlUU6bpd9qfCW9cAgPD0x
ypMTI0Pz/GdiYa4slIhGQlSbHcquyMmJLCHP4Gp5uDXEUktnuXVvFJOvrZTumQmwPwMI68Ua
31so3tOBhoEAfO54nobTQhAEVtpdLlV3zyvp9eXyGYuFcX0fSRCRBJG1bpuIJnAym6Vm2APL
NUVB4FQ+zZdPHmYkeltQFtp1qhtIrQzXYaltDOzwvhGu76M7DodSKQRBICCgbLRRRAndtei4
Fm7gk1B7BUBRWevRuK/z5LTWZwdJEMmGoiiiiCgIvdajQMexERA4mszTcW0EQcBfVwpJEEEQ
CAL6qeEhSebpsWnCsowXBD3F00KICJieS90yadk2TdtCEALiIQnXB2cAbXY2rPH5Q/t4cmIE
URCYLTV4dYjkyEary/6JHFeX1ijqHtHAoerAeDqO59g72vO3kMnHiSXujVjAdF2OZVOkBrSF
3Q2bltCPTeR4eCzD2bV7S3baDQ+MpplKqnQ9h5LRYb7ee4mebRFICmLg0dVNYskY3UYDORJD
DFxsNwAiTEUypEMaN1vVPpNc27GIyiq/9sgJCu0uC802C80OZ1drVHQLAYHlmsmLN0vkIyFO
5lM8OZlDVjb7qvwAVocI4gGsdDp0bJuEpnGlUaRmGaTUELpr9zNXG7ZB27Fo2Aaj4TiSINBx
bHx6iX11y8DyHVRR7je+3kiNfrNVRRFF4kqIuNIzhQQEit0249EkcUXD9Bz2xdMoosiJTI5j
6SxBEHC1XuVseetAJgggCwITCYVTmWkMx8NwXUKyxFgsykQssmnUPzi6M01K/9n5HudurR+t
DrcokorV4asJ4/HNwrv82jfx8w8RdtaolyqkDpxALy7TqncYm8pRvHGDmRe+QHK9qKekG8wk
40Of7xY2KYAoCPz6E8f5J996c6jA2N0goSn8d0+eQJI8braqjIcTvLPWJPA9bn7vq8jHfxav
cIYg8IiOHsbpNmnW6si+jevB8eeeZ7ndxvBNaubmUVp3bSzPIRPS+PaNAl+7tjxwNrhZa/Pa
cpnfO3uDo7k4j+2LMpZQEREYiSRYaAyXLuD4Pg3LIq6q63Z8QNvp2a5JNYwiSqiSTMexkAWR
jmMSVTRajolAz+QJyTK6aZFWtd5a4Y4BOSQrmK6DZRl0XZuIrNCwDMKyxs1mDVkQSWgKRaNF
QtFQpV7OkeX7XKzufB9eEFCzOjw32asSa1oW1+p1zpeLBPTIr45kMpycyhNSJEzn/Y3IqrLI
RC5Bc4PpOXbsJIWaj2H5HH3uKRbPrTI2M0YoH2J03whG1yaxYcawhvSI3YktTtTxeIR/9skH
+Z9ePkv3PbpxVRL5p8+eZiIeoWWbdD2LVaPVqw4TJWZOnmDFB+QwB05MszxvEHSbjB6aob1a
ZyQU0PU8WraJSXfLYkcUBC6Vmvzr165Q0nf3OHhBwOVyiyvlFl84NsGvPXYMx/N5jeHzZUzP
4WarjO/7xGSViKyiShJt26Jq9koLxyMJDM/B830OxrM0bRPH81jttghJMkeTI9xoVXF8D2U9
quwFAZoooYoSLb93L2FBwfF9Ulqkv/5wAx8BkZLRIaNFCYKg1w/McodKalzr6ji+z4VKZb3+
eAP1fKfDuXKZR0ZHeebYNC9emB/6udwLPnlsmlREo9m8pQA+pRvXqLY0clmV2TfeIjb9EMWF
6+x77Enay1eJTh7ZFOQM32M8YOBep0dS/PPnH+J//f75oSlFtkNCU/jHnzjFQ6MZOo5FyehA
IPQS36Q2utVl7uINarLNZBYu/vAdRiZGmasY7Et7YNdZagY8eFzppQpjo4oSnhhg+x4iApVW
wL8+c+6u6AGhN+j+5dUCHcvnH33iJFFZpj1E3a8iihTNJiFJIqGGMFwHL/Ax3F7TCGG9vYzh
2jSd2wKrSeu1ygHr9cDVfmM8AYHRcIyGbRBX1E0uy8R6H9+IrDIajrHYaSAJIl7gIyGiOxZl
s0NCDSEFwzEseOvEVefKg0lrfeCtYpGjB7N89+I871c4QBDgS08eoyp4LPSTGwXypz9BDgFF
03AdB1lVCUYfQxQgOnGY2AZTTRRgNHZv/KI7dogptLv8nz+8yOXK8O6zjTieS/IPnz7JZDxC
2dQ5Vy30R6ewJNMwgl0XnbcgCwIPj6dp2F1kQeTx/DQX6qt4jspvfe8SlvvuUrl/8dR+To/H
eae8+yywPxFnIqGiiBJls01I6nFkdj2HrBZdH63DjEcSXKwVkESRpBpmsd3Y1EY0pvRoAluO
SVRW+u7UqKziBT6h9YZ1ru8xE89St7p0HAtNUug6Vm92CQIOxrO9xbfvo4kq54a4BwDD8Xct
o5QFgR/8cJFz8/fWbWc3PHZwjH/z336e+Wab3z139Z4Cb2PRCH//0ZP3FAvYcY+JeITf+vRj
/JNnTrEvOTzV4EQ8wj98+iT/y6ceZSoRxSfgaqO0aWo2PJeYJmyb/3MnjmUzHE+PMBKOMR5N
cLNVQQhE/u2bN9618AP8xaV58CTS2s6ehKgiczybpmLpWL5LTAmRC8VQJZmkGiKmaDRsg5Zt
ojsWYVlFESQKepOpaJLIOgeOiMBkNInp2RxJ5DiUuF0j4Pg9n79Az7wTBZH5dpU1o0XLMWnY
XQICREFgPJLADXxKRoea1aVmdbYQ6A6C7wdD1RC7QcAvPH+CqPbec/dENIV/+nOfQBQFZpIx
DqbufhEL8Oz0KPIw/t0BGLpHmOcHXCo3eGu1wsVSg6phoa9nZEYVmVw0xLFsgicmc+xPRQno
2WWqJGG6Di+vzm6JWEZkhaya5PvLKzuWJ45FI/zswYMokoTr9wpALjfWOLei87XLd5fnvhOO
ZBL81mce5aXlpYEVWdlQiE9MjlG3O/0il5ZtYvm95yALEtBLWz6czHO5vkpu3b/fz/EJfGKy
RlIN4QcBHdcirUawfRfDc4jIKi3bJLluWlm+i+v7yOsJcqbnEJIURkKxnmdovf64sZ4ukVLD
SIHClfr/T92bB0l63+d9n/e++r7mnp29D2BxAyR4ABQlypKsy7aOUpUspxzHcUWWEqdyqCKX
KypHiR05SiqVlJKUo6QkW5EtyaIYyxRFUSR4gQBB4lhggb1m5z76mL77vd83f7w9szM7Pdcu
SCJPFYDFTHdv99u/3/v7Hs/3eQ7WDBURSCkaq8ecOrtaKtFvuPzq77/0vlEjJFHg1376BX7o
ibM7P6v2bX77zfdOpHBxtVzgpy+fRXrADXDszEESBa6O5bk6lh82seLhgk7q00EU8najzvXm
Bt+uh8RxjCSKVAyTR0olNEne54BoyipXikVSisLX19b2edHKgsCFQoHnJydQJIm60+daY50Y
mEsV+VcbD+4DNgq3tjqsdW1+9MwZVrpdbrdatFyHlKJyJpdjLpPh3dYGOTWhMWwvQENSCKII
e0h98CMBWRCQBJG1QZucajBmZljpJ2XBXuCiyzJ+FOKFIYPQww58JEEkiiMGgUdONfCikEHg
Y8kqXhQSRCHTVo6q3WWp32TMSOMEPmUjhSVrdH2XK/kxNEnBDgMWR5D9JEHg6bEJOq5/7A2g
iCI/cPU0Xcfjv//MNwge0n5KFgX+y5/4CH/l8TN7fl42dX7ukXP86+t3aB3hSywAV0p5fuLC
3AMvfnhAfwBBEFAkge1DsTYY8JfLi/tM2IIoYq3fY73fo2IZyPK9YW9VlJgwsryytslSp4sb
gIhITteYzaTIahrT6TTpIe0AkubVNlP0en2Lxe8AU/HrS1UuFjM4kUckuomBteDjhA5hnEoS
W8+mMqzte2GAG4VD6kOyASRBZNPuktMMRE+k7wd7ustpRUMRJXq+SxCHNJw+KUXDHpZzRUGg
anfRJAURAVmU7nGJohBNknfCJEtRsQMfWRQxZBlzOEX1/MQ0k1aam82E5ySJAqYsk9JkSoaB
eUyeD8C4ldAM/vpzl8iZOv/tH3+N1uDBZgTyls6v/OTzfPKRuZEM29lMir/zxGW+sLDK9frW
vsKGAGRUhafHSlzKZmg0eyiyiGVo6IqMLJ9slvihbVI7nsufzt85FtHqfD7HZNpCRKDrhnxp
aW2k5ujpbIYfPTe3r7R1p13ndic52pcbPr//5urDvPWRuDqW5+9+aG7HkG83SrqJHSZkPVkQ
sRQ1MaSOI+I4Jq9Z2EHinthw+1hyQtnerlGrosj5XImmN0Ag6Sd0h1Wisp5KFKi9PoMgEZcS
EBgEPpIgoEkyQRyhiwpuFO6o32nDStR6v0PFTHE6XcSUVebbW8x3mnhhgCpJVAwLL/bp+A4Z
Reep0gyfuX2bmn24OEBR1/nJ8+f3NMjWmz3+zy++wZ+8dvPY1SEBePbyBN//3Cz5lM6YmeJC
rnTg8HscxzSHw/21gU3f9Xn39hp3bq/T2GixWW/vcQJSZYnxUoZLp8b4+BPn+OQzF8hYR3eW
H2oDxHHMny8usNo73iyxJAj88OmzdD2fT9/cnxPsxnQ6xd+4cBZNlvDCgPVBlyCK6Pouiijy
xdt1Pv3uwRvgiakKOU1hoVankE6TksBFRJcFXlus0j8gAZxI6/zc0+Mj27tnaQAAIABJREFU
NUcFEnJZx7PRh0M5MYmkIEBeM/HCgH7gU9Yt+r6/b1qroOsMwuRunlF0nNBPCHKSxCDwKWgW
dpAM64RRlNAhgLOZEiv99p4wUpNkLFlGlxRkUaLudJmycvhhzHvN/eFhVlOxVBlDUsmpBm3X
41qtsS/03EbZMPjEzAyFXXTwKI5Z6DZZ63dZ2erwzXc3kAKRetNmtdllMCybm6rCWM7iylSJ
YtrgqYtjbASdPZ4P06ksjxcnDpRCjOOYd+bX+fNX3uPfff0dNk8ws67KEj/y0Uf4yNXTfOq5
SweeDA81TbDlOKwNF3/g2sSShhQHdLsDsoUsnVoNPVtACF0Gtk8mn+Odeo3bzd6Rgxwr3R7X
6g2ulgt8Y2OR/q4vvqAZKOLhbz2IImzPJ2Jo71ltUcllyJkWhigcuAEkkZGLn+HrpBWdMApx
omBYwRKwZBVZlMgoOpEck1JCmu6ArGrQdJydL12AYTwfEA1zJ0WUKesWi70tDFnBiwJSqoYd
+KiShCSKmLJKxUiz1NtLLUiS4gBheEJYisam3aU9wiMNwA0izmVz3GhVd0SKyymZqbTFenew
0wNJKQrncjkuFhIT6205S4C7nSZvbyU0C8OUeeHpaXRJ5vumzrDe63Jjq87A98kbOlfL4+R1
AwG41tgg6u695jW7RxhHiML+xdm3Xf6n3/8Sf/iXrz9QzuEFIZ9+6S0+/dJbfOiRN/hH//4P
Mzte2Pe4h9oATTcJBxI6w/+LdPFHCNfeQJRiNiMVRzYJB3cYm8hTW1jh7AsvstTt0jyGaznA
fKtNWhP2LH5IiGCxcHiX2vZDDFFAUXWyMuQNFSeIqLe7NA4pm4qCeKAxhzis8CAksbgdRZxK
F9gckuHano0XBcRxQkRTQ59Hi+PcaFVRRRlZEqg6Pc5kivR8lyiO0CWJqt0lqyacli13gOSJ
Q0UEhomyz3y3jibJe1QpEiJd0pV2w6SKNJcq0LJHy5eEccSdzl7P4yCOyGkif+PiBdwgxA1D
7rSbLHXa3Gg2EEWBgqbzSKnMpJUa6ebphAHXm1WWOokglyBDy3d4eWOJj04kLjDmCAl0Q1JG
3v1rzS6//Jt/yNt31vf97kHwyjuL/MKv/S6/8Us/ybNXTu353UNZJIXDur4gSsxduZzc4hSd
01cv4Q1c+vUNRFnFMDSUQgVTlfcbOhyCvhfQ80cnW+XU4UncnXqTb67WuNNo86WlOrdbA+42
WnxrY79q2m6czmWYO0CesKAbvNeqUrX7CAiIgsAg8OgNO7Hbiel2E0sWRMI4RBYTkzhLUSnq
Fm4Y7Cxabyid0vO9ndHHMI4YBC6dnUmwJCk2ZZnZVA5LVpmyMlSMFDnNGOYCMgXNZMLMkjvA
1yylqDud590YBN5OLP/llSWuN+p0fY8gjvDCkI1Bny8sLXCtfnDJeXvx70YQRdxqJbnUTCpH
YZcdkiKKXMyXE4brLtSaXf72f/Mv37fFv41Gu88v/sa/5tXri3t+/lAbYJvTHoUed67fYuPW
u+iKwFtfe4Pc9Di6aSDJcPNbbxB7HkEUn2h8zVLlkVNXAE+MlY41x3xSPDle4FyuyKVcGV2S
kwRUlDidyXOlcM8ML6+ZCddnWKbMKDqmrFLQEoM/geRuPt9tcCpd4L3WJnWnhyKK9AN3J6kV
SVSSs6pBWtHRRBlFlIjjJGfaju+LmoUT+oybaRRJIKPqdH2HjUEHU1YpaiZ24HOrXcVQJIz7
7riGrHC1OL7TXd4NU1YRBYGvri3TPmS45o3aJtKIcEUfEvFGoeO5xHFMx3PIqBqWrJBWVJ4s
TVLW9zZXuwOXv//P/oCF9e8MG9l2ff7j3/xD3t01+fhQSbAbhvzhzfdOxMR7emycV9dqNJ2j
y2jff2qaR8sFXtlc2uMqk1ZUNFnkD95c5/W190/J2lAkfvevv0BOV4dSiMkdUBFFFFHCj0K+
WVsio+pU7ST3kQVxR+K85dmYssqEmWG932EQ+ujDO3PTG+AEAeNmhrZno4kSpqLR992dWF4c
xvK94VxxQbeo2UmpV5dkVEkgoxj4Q2OQJOxykEWRMIpIq3pCb5ZkzmSKrPW69HyPlKIyk066
0DWnz7Wt9R39f02UmMsU0ESFzy8uHHmNyobJRNpgc9DHj0JymsHVwhivVVdHOv+UdBNLldm4
z/5VROBstsiZTKKDFMcxv/bPP8sfffGNh/kKj4ULM2V+57/+BSxDe7gTQJMkLhWKx368Kctc
yhd4fnL8yMfmNY0rpQK2F6IGFmuNgDubNqGrMqZn6HounzhbeqgmyP34kfPTZIctf0EQUEQp
MciTZAQhqccbsoK3Kw63FJW8ZhLGMXnVRBEllntNDFlBE5MSZc3pEUYxqiTT8RzUYV1/fdBG
lxScMCCvGViyiibJpJWkSrM7pojimFOpIoPAo+H2h14IZcbM9JAurVKz+7Q9h027x0q/zcV8
iSfLE6QVg7dqDT57d5FXVqsMHJE4lJm1CpzOFLjTqfFmfe1Y16jlOnS8AZfzRQq6yqVcEUUS
OZfdn2CKCARxuG/xQ+IAeqtd38kpvv7WXT790lsn+boeGDeXa/zzz7wMvA99AD+K+POFeTYH
h5PaREHgB2bnmE6nieOYr6ys8Y210dNnhiSRlQxeWarx9mZzX61ZAM6UUnzkdIGOC5+9+fDx
4kTK4Ld+7HkMWaLvB0RxjKnIKKK4p2Gz2N2i47vUnR4ZRaPt2aiSzIyVZ2PQJSZOXGg8G0NS
aA4pEKasJo4uooQmJ3TnYBj/61JS/ckoOpt2l6JuDUMjIZE9DJJRSUEQ0CWZnGYwCFycMBhW
kiTSir7H28yQFU5bZb62usZGfzAy79EkiQuFLHlTpO+FLLSPLjPKgsgTY0VEUaDnOwwCnyiO
eH7sDBv9HnfajYTnpaicSue42aoeandrygofHT/Nz/5Xv82Npe8M4W7k36ur/Mlv/N2H3wCQ
hEJfW11h4QCdHVOW+djUDFOp1M5iiuOYhXaXb25sstkfEEQxliIThwJfvl1l+Zhd3nPFDL0w
ZOuYlaVRSKkyf++5CwwCj8VOLyHtxTGiKFAxDR4tFXm0nJQE32tVWeolC02X5J08KJE+SULB
CTNDyx1gDTdCGMcYsoI+7OwKgoAT+vR9l7xm0hiWTOPhLLAuK7ihT0rWyGuJjtBi797iLmgG
kiDSC1wUUcKUVbwwoL6r5+D4sNRyDrU62saEZXKpmOOt+tELUJckiqlEle5irsJat8d8u01e
SaFKEmXT4HQuQ0pR2Bh0ebNx+MkiAGIN/tP/4d8c+Xe/3/jbP/bhh98AcRzjBCFtx+PmVpP5
VouACF0RKZsGU6k053N5tAO18mO8MJl5fX21zq9/8Y19sodHQRIFFEUmeoBoKKXKPDOTR5FH
+1hto2jo/OjZU9zorO8pkY4ZKQxJYRB41Jxk0xY1E02SaXk2qiSRVjT8KMILA2JgNpXnZjsx
8isMwyc7SPIFXVboeM4OXWJt0N7h+UASVpQMaycPEIApK8fmoEtWNdi0e/S9iHdrnRN5PRR0
DUmMjjQnv1QoEgkebc+h2gmp9b19zzBkiQ9PjlNJqby9dbjUjgD8239zjS+9+p1XoLsf5Vzq
wTZAHMcM/ICX5tf54p11blTbNB13J1QRgIyucr6U4YUzE3zy7CQ54/Dqz7vVFv/g3778wFNo
mizx4tkJvr5SO7ZCwGNjecayCrFwvEugSRIXKwaylDxeROCRwhg3W1WCOCKrGhQ0izudpAub
14ydZLXv+0TEqKKIISm4URK+tN2kUaaIyZB8FEe0PZuMYuAMqQ5+FCIiEpEM1je9QZJ3RBGG
rLDUazJpZpMSZyzy8kqdwQk0gLZRNjUiDr7+GVXjh+fO0HJd/ujGnSP1e84XMqjq4czO0I/4
7/7pn9HuHd8X7f3EieuIXhDyR28v8C++fevAjmMMtB2P11bqvLZS57devs7PPn6Wn3/yLPoI
WUQ3CPn1v3z9oUYw3SDkxmaL//3HPsLn76zxlcXNPcpx27AUmWemSvzV89OsDrq8Uz9+yc0N
Q27VbZ6fKeBFPmlFS5Tgho0lJ/QpaCbzJNfACXwMWUERJeyhSVxGsQjiiEkzy5Y72LnjxnFC
qSjrKUp6iqZr422T7AIXTZJIDQfhdUkeTpV5yKLIo4VJbg9PFN9XH2jxA3TcgI9MjXGj2dhX
2Rs3LT46NYMoivzZ/NKxxKtubXWYzqlk9YMJal47+J4tfjjhBlhp9/nHf/Ft3tk8mXew7Yf8
36/d5KX5df7RDzzJ+dJe/aFPX19g6Zjy7IdhsdXj1eUqf/up8/zCE2epD1zuNNus9/oYisy5
XI5TuRSaJLLa6/P5pcWjX3TEZ+nbIqfyGZZ6W6iitKPqAHCrUyWtahRUCzv0kISE0DZlZnDC
gIqRxosCbrXrhHGMKasEUQjE+FGIHfp4UYgpq0ihT0wiFCYIiUbo9j/5tEnXF6g7AxrOAEkQ
mTRzvLxy8BzAUXDDEFWU+YmzF1jqdrjbbuFFATPpDJcLCaX9Wq1B3T7+gm32Q8YtfZ+oGSTh
43z7/aW0nxTH3gA3a23+iz99hfoD0mAB7m51+U8+8zL/+Aef4anpZALKDyM+/c7JF+JB+JPr
i/y1K3MIAjS8Ds2whaLHBHgs2h5pQ2DCTPPGZv1Eboy78Xa9wfNTV1jtt1kdtLFkFUNWaDiD
HapCUUu0PrOqQRTHbAz6idRhv0dO03em4yRBIK0ZSGIyUyGLEi3XxhGSBlvS6fWJ45h+mMxD
67JC23V28oJtaKI6QtQr5s4rXyeQLCrjGTYXV6lcfIz24g2U3DjTZ/f6B28MBsxlM6z0OomR
B/Bes8FGv8eHJ6a5tXXv5ucP2izfXGDmkUfZWrhBpGYR3SbtrS7jlx8nkzXp+yFn0hWqbouu
l8jUGLLCpJVh0sryja27J7r2hmXx7JkiX357lecenaPXahIoJlOlFHcXN5mdKLCxWefm+vHG
eI/VB9joDviVz776UIt/G23H51c/9xqLzaTkttTqsdp5/zyJF5o9Fltd3t2qcbu9tScRtIOA
16qrVO0+y/s0gGLq8++xVd3C77dZeOsdojhm7Z036d3nJ9b3A7ZsB0VKjvacaiQnwa5yqR36
9AOPMI6QBXmP1n3LdSjpFkXd4FJujJZnszlITPs2Bx0eLUwgiSLdwKVqd+kFHqIgIAsiFSON
Kav0gv1Vr4bbJ9pH5AvotToMmk1SxRJx5NNauMHGehN/lLiv5/Ot2jrV+7waWp7LqxurNHbR
p5fevs7EXIX5t97DLE3QXrpD+cKjpFMqwi7lu5utBjUnMUX56MRpnhubZTqVQxQEnBMWPAg8
/FgkV8ixtbmBmUpxc36Fds/BlVRUISafOf6A/JEbwA8jfv0Lb1B9H+O0ruvzDz/3LRw/4NoR
IlyVtEVOkxnPpDhfzGBKIpPZFCnl4Lf+zdXanpr4bsTAW/XNffMLodOmXh2w8e6b9HsDCkWB
9/7yi3hGhcU3vrXvdd5pVvHDkKyiD2dxB+iSjCEpTGx3eyWZpjvYNwkH0PYGtD2bu9360Bkl
qQSposJ7rSpxDHnVxAl8HitM8lhhCgSBtUGbaDh/cD8E2D8PHNiIZglLg4EvMntxjk6zQ+nU
WbzO/nDJi0I2+qMFwrZcZw+Rrjw9wdL19/Bcn/rt65QvPYYQuPRckbS5P7iIhmHe7rFK+YSD
7LbrEwN+EGLpGqosoafSRIMOqbTJzTtrmNb7uAH+9L0lXl978LjyINzd6vL7b85TO0THR1U1
zmY1rk4U6dgOuq6TN1SEKOSx8YM70Ivtw0uA/cAbOdvq9baIkBEin81Nn+mLc/TWbiPp+y+o
JWuMmWnKRgo39MkqyYxvMsgxwA0DcqoxHGrf+1yBRBEirSR1/u1fd32XXuAxCHwGgU/P98gP
tUU37A5hFCEgjCS0AYnUonRfwimnqYyZmFNnEO0Wa0tNLn38BTK6R+HUuf2fS5EPnftVdy1Y
UZaJ0Zi7Mk2nNaCzuY7dblA5d2nPc85lC6Qkg64T8vmlef5iaZ7brS3CKCKbOpkf8FiliCxJ
5CWfvqgzv7SOKoS8s7TF/J0VSlMV3j6ByPOhOYAbhPzLb9850Rs8Cf7grbt837lDPAXiGEPT
CIMAOwhR44DVnstTM2Vu1Q4+OY4a3FYlCVWSCKJ7p4AgKYnzo25RW7gLko4XZZBFEc3cr4gx
k8oyk0kG09cHHSxFIyJpZG3nAV3fRZcUgjhizLToeC7hUB9oexJMEWVkUcSSNRquze5uRCKW
q1AbJHfki9kx6k6PpjvAGNImnNBHFEREoOX3sVQRe8/hJjB24ZGd/0sPnW/081f2fSYBuFgo
8EbdHcnvEgWBi4Ucr6wlDbNUZZpLleT1Hv/Up0Ze65Qic6NVo7kr3LKDgG9V12m5DjPHlF/c
xma1wWZ1eEO+3yI38vn2u0sner1DN8ArS1XWu+9ffH4/2o7Hm2sHL+SYZIgjDEJylsnyVpt8
NkNRimnrKjVndPw4m8mgitGBJmtlw8RJy9zcldCJisWlj7+w77Gl2dP7fqYNO56QUBxmU3kW
u1uIgpBofQ5Fq06nizScPhNWBi8MudHaZNbK40eJOlwy36qx5fbRJQVFvEeJhkQBezuvEICO
b+NHIaai0nbdoY+CxDPlabq+w+12nUdLGV5aWn+gBH8iZTGbTtPzXd7Z2k99thQJU4uwFIn+
MUvWJUvds/h3Y77d5GwphyDwHRPeOgqHboCX5t9fTvYoLLd63B+2bsP3Pb52v1q10+bzRyT4
l8p5immJN+r7F4ImSVzOVygo9p4NcBJcKGTZGHRY7LYYBB6KKFExUlzKl6naHTbsDnIsstJv
0fZsREFgy+0zly4ObZUS5/WsYrDWbzOXLtLxbExZJooj/CjxEciqOgXNQpOUITVDTFwUg2Dn
c/lRSNXucTpdYNzIEAMrXZvbzZN9NkUU+ejUBHYQUNRNJq00NXtANGzkVUyTQdin6Q04U9S5
XXePnAN/vFLCx6VzQKIbA54ccXaqzO2V90/e5rgQBeHgDRBGMe9WH0wR7qRvQlckBiPEbB8E
aVXhUjmLLksoosSNVp2+n1RRMqqGIom8WV/HlBXGLJ3NY2iJ7oYmiehqxBv1ezcHNwzp+Vs0
3QFjlkUUJ0MtYixgSApeFOKEAUu9Jt6usKs/VHPrePbOIPyEmSGKk2SxoJmsDzoMAperhSkK
mkkQRdxo1/bYrqqivMOxEoBPzkzT8zw2+sc7vaWhLeubtRqb/UQzVCBJUMdMk2fGx8lrGt+o
LuBHIXld48qYxGYnZKW7v3+jD6kQV8tFPrd4eAgdEPNDz1/mf/mD7/4GePbK7MEbIIgiNo4R
/hQtg65to2k647rEnbbNI2M55mtNIklBi0Nah+jDxzE8PlHg5feJCfip81PocmJjNGGlGTdT
bLkDUorG67U1Nofx9JYLBUug58kjlaRHIfEayNL1RyspNF2HIA6ZSmWYMDP4YcjNdpWOZ5NW
tH0hWVrRccMAXVIYBD5tz8YNE32gfuBR0q2ENSrK6ENKtiSKjOkZVrpdYkIqRpoJa6+imqUq
/PjZM3xxeYXbzcMn4CxFZswyWe529lR4YsALI5a7PbacRb5/dpanSjPcbNcwJYW5tMULkxar
3T5LnQ6bgwFd36FiGnxsaoa0qg4ZtcrIKtjONVBV/tqLj/N//PHX8E5od/Ww+JkfeOqeQcb9
6Lk+v/vt26N+tQNBlHhmtkKv1+NCJYctSJzOp9lq97hQziLrKcbkkI1DLHJiYn75o4/ylYWN
Y0n1HYaUqvAPP/kkqV0yfht2wkh0woC1+3jpggBPj4/RcYIDXWG2ocsSP3ZuDjd2D/WvFRB4
tjKDOWyObYvnbrM6vWHJc5sVmtcMNuwuaUVLLJREEUNWyasmi/0m/cBjLl2koFlcqzX47J1F
Xl7boNrzqPZ8Flp9Vrt9MppKRr1nHapKEufyOcYsEzsI8MKQKGaYN4jkNY3HyiUuF/O822gQ
HBKE+1HESq9HVldYG7Rp+06yEY00WU1l3DJo+C1MTUCUIqI4omKkE6FgBFb7o2nWsiAyl80i
qxKdjs27d79z5iz34/LcGP/Zz3//wSeAcAx9yTgKWWgnp4QbhHS9kJwkMJ3PMPAcFto2V6wj
FnUMZUvnF5+/wm9+5doDd2dFQeDvP3+FSkqn73ts9Pt0PW9IJEv48rA/pDMVmRdPjfHaRpXV
jo0T7OVDarLIqUyKF2amKOo6d484qfwwSb7l4RxBWtGZtLLcaifaqJokk5LVIeU5SGTNJZmW
m4xJMtwcSVMreSebdo9XVhosdvYvpBhY6nRZ7nR5bnKMj01PIg4nrKp2j3WnScaMyZomZT3F
lJUY/ZlycqJ85vbtQxf/Nvq+zzv1BttSO0EUDTWQJDq+s+d0qzl92q7D9a3ajozN/ZLtsihi
KiK3O0no89QLp/jCazdpdw7XKXo/oMgS//nP/wCyJB28AXRFQpPFQ4VnFVlhLmtgSwENP2bO
kplvO5zJGvS8kMvlDGU5Qt2y8Q64xoqUGD382OVZ1jp9fv/N+RNvAgH4W0+d5wcvTHG9Ueda
vYazq4wnCgJx2BlOX/l7fn671aDne8gyzOZVMqrO6XQRLwxZ6jVxIh+BgNeqy8xl8iiStKMA
NwqSKKAIyYhi4tErUNZTWHISElSdHn0/Md6TRZFOOGDgBztNIlWUeKY8ThTH3O7U6Hou72x2
qA8On3eIgVfWNpFFkecnx6naPd5orO0pCa8NWmQ1laKeT4ZtXJfqEcJYu9H3Qi4VSyx2W9xt
tbndbKGIUqIcx70Cri4pfHltcaeiFcdJqDVupnHDkLSiktFUbnbu3UwMU+Fv/uxz/G+//ZWH
ll48Cn/zh5/lmcsJBeTADSCLIhNpk4VDXBj9wOfLt++JU80P/1vdNjtrHk1wM1WZvKkhCgL/
4YcuM5Yy+a1vXD+21r8uS/xHH77Mj185xbV6lTeq1X0bKIpjVnpdUqrCTCaVDLIrKn4YUrXv
vUdBgK7vEAsBLb+PHSWLLgbcKORGq44hHU6fKmgm17fqLHZbuEGAIklMpTI8VqwgyyKN5oD6
LocbTZL2cPC9KMQNA1KKxiP5Cb69UaU+OD5j9eXVDc7nc8x3t/b1Q2ISXZ9pK4csCLRc90Ri
t04YUhvYezwjwjBgodMmo6pMpqzkFItFVnZRTQQhkU65XChhDSkSVXv/unrm0Vl+6Wde5H/8
f7547Pd0UnziqfP84k+9sBMqHvhtSqLAYxOFQzfA+4FHx/I7snthFPGJs+PMFkz+xbfv8PZG
80BuvywKfGxujH/v6QucKWRo2DbXarVDT4+e5yPFMi9OThMDX1qdH/m4hU5znxbRNoI4Jqvq
I82rVVGibjv0/HuD+kEQcLu1RXXQ4+nKBI377J3cMNwj7W3Iyo6iQxBFvLZxsuJAFMe8sraB
ZYy+bl4U4A9DtJMijCLWel3EEXPYHc/jOWuagm6w0BlNQ9n9rLxmoN+nczRhZnjqRz9MGEX8
z//qpRO/v6PwiafO889++a+h7qLkH3o7e+HMBJ+5frLO2onf1NlJVrs9Xt+sstJNxhFj4Nyk
yVzFoO+EyLGM4yfJY97QOF1IYVohkhyz6W+Rc2UWOp1jxbJ3O20eK1doegdXuII4PnAjhXHE
E+UJ1nodlntt3KEy26SVRohFbrZG3607nse1xujFfDZTouH06fouOdWgYQ8o6iZNx90jWxjY
XRbevk753BXc+hIDX2FytsTijQVOPfY46tD4b7Xb4xErPZKCrIrSjh5nXktO3uOeAqKQSLgc
hLo9IJkpi/eJi+U1nQ27RzSIKBspMorG06UZ7na32HKSKp0hq8TA3/nxj1DJpfknv/N5eif0
DR4FSRT4+R9+jl/8qRfQ7pPSOXQDPDtdZjaXYqn1nTkFiqZGJAf88c3b3H+/iuIYUYK0JVHQ
NX7o9ClKZjI3+16rynK/RRQljaDrzQ16xwxlnSBg4Pus9JpYirLPZFoWRE6lc9xojeapy0Iy
0XWlUCGraVxvbiaSh4py5FB5x/UoW9oe+ZCUkohc1Z0BXc+n6zWZbzcZM1Nklb0UjNbCTbTS
BOs3b3Lq8jlab77F3X6TuUunWLmxxJlHk661HYRMWVl6LXffiOOpdH7HlCSlqoyZJuuH+DTv
RsnU8aKDK2DNIbkvImbcsiAW6A8N/jq+w3vN5AYw397iifIkedVg4Ps0HYctx2Gp26ZsWDxT
meInXnyMx85P8ev/1+d49friSPLfcXBuuswv/cyLfOKp8yNPrgPLoJDs+Lyh8aX3WaVrG8+e
LuAJwZFJrx0E3Gm1mctlMGSZ+W5jD2UgjGK8MD7WJJQoCISCR8d3cKJgKH6V6F8qosTpbIFT
mTwNpz+SDzNmpsioKqoo80Z9bUdHtOM5dIZMxcPwWGmcru8iComc+WPFCTbtHnfae0+Onu/R
cX1quyjovXod1/MgFnG21smevozfbVOaKtOs9SmMJdIkkiDwidkZsqpGb0j8k0WRspZh2sqh
SdKOl1lGVbnTbh95CuiyxIcmxpLu8IhPKQoCs+n0jgpGSlF5pjLN6WyBru/uCf2iIfO14QxY
uU9qMSEBukxZGfIZkx/92CNcPTdFs2uzWj28p7Eb52fK/IOf+z5+5W99ivMzlQNd5I8ciHnx
zAQvnBnnpfnDh5tPijMVi7Hc8Y2NB0HA5xeW+KkL5xJl410xuCErFBTjWJNKqpQos0ESkwpC
zJX8GG9vVbEDn/eadW40GxR0fejb5e881lIUttwer1R7iSlGvHeDaJJ06CaUxUQqMa/rNJwB
buTzXmvzwEqbF++926bHKmzdmCc3PUPzTh2fZcZPTfDuq+9y+unn7j1OVVBFCUsy6PQk3txs
UR84RHENuIshS1ws5nh+eoyLxSwfn5riq6urB7pLGrJEKSVzp1sK0nz7AAAgAElEQVSjYhps
9PdvggnLQhCGDjWiwPlceWfROSOuySDwqfmjw9CNQQ8nDDBkBVEU+fgTZ/n4E2dZr3d4+do8
37qxzPxqnVbXxvF8VEUmbWjMjhe4enaSjzx2mguzBy/63TjWUHzTdvn7n/46i+9TQjyeNvjo
xSKSdHIZhx8+M8epTJo3Gqv0fJeUomHKCmEEb9e2jrQIvVoq0Q66O3TpMIqx/dFaCFlV55Fi
heVeE1FIRJ6a7r1YK6ca2IFHGMdMWVmEWOL12sE3iryuoiuQUYw9LvVhKOxJBrdhygorLY/G
CePgp8bKmLLKZ24uHkoxEYCrlQI/feUMThjw+uYma0MqBCQbejqdQpKS0cwgjpiyspiSxnq/
R8dLnG4UUaAbbLNbJZ4tT5NW7+mTrvTavNXYG0UUdZONfu/AO/onpk6T0w6mSsdxTBBGhFGU
cHokEfEBEvtDQ6BtGIrM87MVvrlSo/UQ+jsAUxmTX/r4FarOg7FM4zhGlkLW+h1ikrLjut2h
5ydWRn0/PPCiTqZSfHhiEktJDK41UabrBvvyj224YYAoQNPrY4f+vg7wXLrAXKrIpJllKpWl
oBs0XYfuCInAnKbzVGUCRZB3lB0g0fgv6SlaIxiTk1aG05k8N09AbFNEEQmJP7uzciy/4M2+
zXv1Fh+aqvBIqciFQoGsriAIIWlNIqXKTKeynM4U6fke6/0uNadPXjewVIlYSAxCtvWHEvpD
0k/ZclyWOl36fkgQRYmtq5h0vwUhTpi+I+6/kiBwpVDZJ5y7G9u0EFmSkCTxWHf7ka9zElmU
juPxT774Jl+++2Dh0DPTJX71k0+w0u/ylZVEMCmOQm6/9G+xrvwgQuMGtc0Gk5eu0FhaxHZC
SgWD+maLy594EU2WSCkK50vGPUtRRd1pbhU1i5brs94d7PnyEyKcwoVCnkkrTVbVEQSBvu/x
uaXD6R6WoiCJyQkxZqQZBInLih+A7SV5hwAUdYOnxsYpGwa3Wlvc7bTo+x4CAl4YIyDgBMk0
lCSKGIpAXtd4ujJBStF4eWNpz+mSVXU+ND6DLsn8uzsLvNsYXVq8HxXD5NsPIC57Np/hF5+5
Qs3p8+3a6p6FKQkCV4vjXN+q7qnsXMqXSMkqa4Mu9aEmkgBMGHmu19osd+75QAhAWlN4ZrzC
E2MlOp5D23N5q75/LV3Kl7mYKz3woj4JjnUCbEOTJb7v3CQXylmWWj22jjkjPJdP8csfe4S/
9+ErpDSFxU5nl0GbQErxaIV53HaNc0+cp7HpMVZWUfIzjM2M0dysUZqdRRIFYuCJsXKioy+I
PF6cpKynkmZXv4sXBeiywETKxFIl5jI57NAjIqTh2NzttIjimKJuUnX6rB3AU9lGRtV4rDRB
TjU4my0yY+XouSF3mm3cMFnQURzT830WOm0qpsnpbJ5z2TymrDHf6jDwA7wwSibGSJzq3SCi
5fhU+wMmUilOZ/JDpTmNU+kcjxQq2EFIddCnaOrYQXiocZwiinxseoKXl4+vi7QbTcclo6nU
vc6+TncMdL0k1NudLF/IlamYaXKaviPuG0Uy31ip0bDdfSexG0YstLu4QcSlYgEvChLT8ygm
JsaUFS7my5zPFr8rix8eQBdIFAQ+fnqc509VeHNtiy/dWePaRpNqz8YLkzulKokUTY3HJ4p8
ZG6MZ2dKqLtG9Xb/mTii22zSp4nm26zfmkevXGF9+Trnnj3L23/xOSauPLlTwlIliTOZAmNm
ClkQ0WWFjUFnh5suDP8VxAE5XWWjn+h17r6gN1sNYmLW7aPp3mlFo7RLxrvturxdH91w86OI
1zY3+BHTYqXb5UtLS0f2JhqOw+cWFviRM2c4lyvu/B0vrSxTHdwbTBeAsZRKHEt0XA8vTCjL
hixzJp/huYkx3q42T2Qxej++uLjKM7Opkb/zopC5dI67nWZS5jTT5Ic+BKas8kRxkqbj8nvX
bx7axY+B1zdrmKqIQx9Dknlxao6YxFzwIJn17xQeWGBfFkWeni7x9HRpqBQX4gQBcZyUzFKH
GCuXjd3JTUycnqUiCRQuPE2n1aMwliafexxRgOkrj+B5Q9U5AcqmgSAIGFIyFdWwXRZ7zX0u
4WfSJXRZZqmzPPI99P1EdkSMQzre6DurAJzO7DXL2Bz08Q6JrZuOw3q/x1dXV4/VmNt+L29V
q3x8epqu7/H5xbv7kuIYEEUwZZEfP3cxmTVGwFCSkco4jrlWfThd/frApe8ZaMr+RaiKItOp
HG3Xo2YPaAwcXttcZy6To2yYCILA65v1Y1HLY+BatcmTk2nKhoUkPHgM/7B4XxwmBEHAUmWs
YxpWTKYsTFlO4mdRpjx3b+ywMJZsDm24SQpTe3VrzuSyvLZR5fXN2p6Fm9VUCobMeFpnzEiR
1/VDhVmb7gBZSk60nKaPTELHjDTVwYCGbVM0THK6jn+EF0IMXKvVj+WauRt3Ox2e8Dy+ubk+
siK0jUHgc61e5eNTM3sWTRjHbPb3dwOb89dp1Rpkpi8w2JhHzU8gR32ay4sUrr5AobT3ji/E
MoyQR1RFhT9buLMnB6g7NrfbTc5lCzxZHuNO6/gDVB3Xo+cFnM8a37PFD+/TBjgpREHg2Ykx
Xlo+mc1pWlV5p761h2i1jbbr0XY9ZEHl2XKONxorBFGIKor77tiJ22OetUELCRFTlnFDKfHx
EkUGfsCW43LbbXGb1s5zplJpZtPZPczH+yELIlvOySVkvDDkva2tAyVJdmOl18UJwz02skEU
4Y8IPULXIfRdBlurtKttUqLBqScex+4OyBX3D/tX9DTltMR8Z2tn5jinGtxttw9U2tjWX7rf
J/owJNKRETWnR1rVD7RL/U7joQwyHhSCIPBoucTpbObYz1FFEUUURy7+3bjVbPHy2gZpRUOT
ZIqmvodsJg5LbGcyBVKyihtG1J0BMTG6LHE2U2TLdgnvG86JSRbeW/UqOe3gBt5kKnVf+THi
2l9+nlc/++fUV+7y5pe/SqPeprV8i699di/rcanbOVanM4pjuvdROCRBHElws3sDSqdPE9g+
RqGAEDi4rQ3k7PjIeNuN/B1DC02SeK4yjROERypNL3Sax5gg2f85lvstNgbvn8vPSfE92QCQ
lNb+yulTnM8fLYthyjIfmZo8tiblG9U6k2aBSStLP3C5XChxMVfGFHUqWgZNVBAQmEsX91ii
dn2Xl9dXD/2ye75HRtPuy2OSE+JcLs8jxdJeWkEsEAYBge+zcfMWgiywtb7C6kqLTFrZw3G5
f9MdhvsXrywKFI39G3PqiWeIIoXZp59l8sJpyhcfRTZzVOamR75u2+/vjDB6YcitVp3qEeYn
kNwgVPn4W0ASBMqmTkVPkdeOL2T1fuN7EgJtQ5Ukfuj0Kc7lc3x7s0r1PicTU5a5UMjzzPgY
79Qbx9a796OIhU6Hy8U8W7bLN1cbVAe74+MqqiTySKmwZ1opijhW7N6wbX7i7HnW+j0ato0k
ikxYFhUzMcfew7CMfcJYxFBBL5YY9D38fg9ZkVi8s8TFDz2/w+IsGjo1u3/k51REkcx95oGC
IHClnGe+dZ8Xl6JTmEnyKCNfPvR1c7pKRpf3CG91fXfPrPBhKBoaXfd4Dc6CoRLEAZdyU3ur
gt9lfE83ACRfXNFQmMop5CyTgmpR0dNYikJO15CGpK2tY5jq7UbTcVnp9vnGSm1kR9QLI17f
rFMxdR6p5DAkmUEQUR8czb/3ohA/ijidzXE6u/cEM2SZtKLQdIfvV1R54pPfRxjFKKqK7zjI
mo4oCpx78kmkXV/+bCaLqcjMtw/v/J7N5hO/4vvw3FSFv7i7ivOAw+VPjOfJaeqOMR8k7NEt
exPvGDefxyolgnB0jrYbiigylVW5kCuP/BzfTXzPN0AYR7zd3MQJfQQB2kGfq6mxRAN/F05q
hjfwff787sKRdIDqwGHWiXhsqsStA7j89yMh0Y1+P5IgMJfN0qze20iSorK9zNVdodPuxa9L
EoYsMpW2qNkDugeUZlOKioTCn95apuV6xHFMVlOZSltcKGb5obMzfPrGwrE+x25ULJ2MFdIP
HK7kK/R8j5JhMWakWOn2Dhxs34YoCEynMuRO6fzZ/PJ9J+49mIrMJ09NYagxZT31Pa0AwQdg
A8Qx+Lu0crY1cQQSFqEiihiywrhp8uYJXne91z+WiQPAm9U6T1TKlIzjxaKWomAeYPkEcKVY
5HardeAiHvmamsQ7zUTIq2IZjFsp7rZbOxybOIa1jstqq8PAH62eoEoiH5qqcC6f4Xbz+Iml
pch8aDbDhJXClBVOpfJ7FuajpQobg96hoVlB0/nGxjJdzyNtxCAq+IGA7Yc7hoNn81meHiuT
07Xv+cLfxvtikvcwiOOYm+3ajgmcKsqooryHP27JKjOpHJ+/u3qsRZ1SFCAexvMxy9e+TawV
yGdlVudXmX38KSS/yWbNY/bcDACfmptlKm3whaWFI2X/nhufZCqVxg0DVElK+EKCiBP6XNva
oO3ZEEmstO1jEdIsReZUzqQz1AuVBJEXJ88gCyJd3+PtapM/ur5A95hS4oookjeUY1VvpjMm
VydNKpbO44VppANCkpVeh5fXRxPs8prOYMiK3Y2UovL8+AyaJKFJ0oGv/b3E9/wEEASBC0O/
241BlzutLbrsvXP2A4/3WlXGUioLrcNHvwTgw5NjfHVItsNr0PdSCFuLDFoqmZzG5koVf+su
kZgCkg3QdFwsTWA8ZbDSsQ80/85qGsu9Ntcam8nUmiCQ1XQeLZZpewOawyQwxufRSp6FVp/m
AX0BASgYOjNZc49Qb05L6uICcKPe4XffvHMiwzs/iqj1XZ6cKJJSZd6rt/Z0aGVRIKsrnCuk
eWayjBu5VAxrzwKN4pi1XpelbofO0NiirFvDhDgmjGMyqsZcJsd8e2ufWQckFbNNu8elfOnY
7/27je/5BoBkE5iSynK3fahLoarEPFrOcb0+eoJJFgU+MTPNxUKOr60ON4BaxFIWWao2KcxW
EBSN3uIt/Min2ahz6bknAXBCjzudxKRiNmcSBhJL3W1J8oR1mtM16s4Ae5c3WhjHbDk2X1tb
Jr/LCFAQBNzIYzytMJkyadgOXc9PpFKAvK5zLpdj1d6i7vQYM9I8USxwu1MnJqYfuGx2PX7n
zVsnWvzbiIHX1xv8B09d4qevnKFpu/S8AFkUqDo9Vnttgjjg9do6iiiiCAoVI95hyX59bZXN
wf5RyaSJmOW58UkUSSKMIt4cwejcRvsAYdwPCj4QGwBgbdA5lAKwjaKp8PNXLvJGtcZSp4cd
+EiCwEwmzfOTExQNfZgYatQGNiAQRxFzzzxLSg3YWN5g7rkPk7YUGpv3fA/GLYuq65HwNWOQ
PGayOpA4s+Q1gxvN1oGLMYxjWo5HZmgIJwB2kFiIWrJA2oDxdIq8ajLfaSAKIYIY7ZQcvSgJ
p9zIx4183m1W+dPrtWPLw4xCDPze27f5teLTTKaTru96v8tyrbXnRuNHEdfqVbKaRl4z+MLS
4r5Z6d2vebfTxglDvm/mFIIgoB7SxdWOkJH5XuNEdOjvJBa6zQMv+m6EUcTV0hhlUwchIBYC
dEXAj302h4laXk98ubaV1LLjU2TyGfRMjtL0NJqmgCBiphMejCnL5CwBSRA4kymRG8oVhnHE
5dwYURxRcwY0jxgGimI4mykym85hhy5FPYUmyuiyTNt38KOAjufiDR3ivSjgVLqAF4WIAtSc
HvFwCy5sOVzbfPgO6TY1+pFKPiHM1au0R1znmGRWd3MwYP0YdIye76FLMiUzKRyMopXLgsjj