-
Notifications
You must be signed in to change notification settings - Fork 61
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Evaluate use of unsigned numbers for public API #368
Comments
Take into account that unsigned numbers in K/JS add quite an overhead, unfortunately. Not sure it's optimal for a low level library like kotlinx-io. |
For reference: something similar was proposed during implementation of |
@whyoleg I am proposing the inverse of that. Unsafe should stay signed, but high-level APIs should be unsigned. @lppedd Do you have examples? For a quick demonstration of changing @JsExport
fun stuff(): Int {
val buffer = Buffer().apply {
writeString("sup")
}
return buffer.size.toInt()
}
class Buffer {
var size: UInt = 0U
private set
fun writeString(string: String) {
size += string.length.toUInt()
}
} which the playground turned into the following JS: //region block: polyfills
(function () {
if (typeof globalThis === 'object')
return;
Object.defineProperty(Object.prototype, '__magic__', {get: function () {
return this;
}, configurable: true});
__magic__.globalThis = __magic__;
delete Object.prototype.__magic__;
}());
//endregion
(function (root, factory) {
if (typeof define === 'function' && define.amd)
define(['exports'], factory);
else if (typeof exports === 'object')
factory(module.exports);
else
root.moduleId = factory(typeof moduleId === 'undefined' ? {} : moduleId);
}(globalThis, function (_) {
'use strict';
//region block: pre-declaration
initMetadataForObject(Unit, 'Unit');
initMetadataForClass(Buffer, 'Buffer', Buffer);
//endregion
function Unit() {
}
var Unit_instance;
function Unit_getInstance() {
return Unit_instance;
}
function implement(interfaces) {
var maxSize = 1;
var masks = [];
var inductionVariable = 0;
var last = interfaces.length;
while (inductionVariable < last) {
var i = interfaces[inductionVariable];
inductionVariable = inductionVariable + 1 | 0;
var currentSize = maxSize;
var tmp1_elvis_lhs = i.prototype.$imask$;
var imask = tmp1_elvis_lhs == null ? i.$imask$ : tmp1_elvis_lhs;
if (!(imask == null)) {
masks.push(imask);
currentSize = imask.length;
}
var iid = i.$metadata$.iid;
var tmp;
if (iid == null) {
tmp = null;
} else {
// Inline function 'kotlin.let' call
// Inline function 'kotlin.contracts.contract' call
// Inline function 'kotlin.js.implement.<anonymous>' call
tmp = bitMaskWith(iid);
}
var iidImask = tmp;
if (!(iidImask == null)) {
masks.push(iidImask);
currentSize = Math.max(currentSize, iidImask.length);
}
if (currentSize > maxSize) {
maxSize = currentSize;
}
}
return compositeBitMask(maxSize, masks);
}
function bitMaskWith(activeBit) {
var numberIndex = activeBit >> 5;
var intArray = new Int32Array(numberIndex + 1 | 0);
var positionInNumber = activeBit & 31;
var numberWithSettledBit = 1 << positionInNumber;
intArray[numberIndex] = intArray[numberIndex] | numberWithSettledBit;
return intArray;
}
function compositeBitMask(capacity, masks) {
var tmp = 0;
var tmp_0 = new Int32Array(capacity);
while (tmp < capacity) {
var tmp_1 = tmp;
var result = 0;
var inductionVariable = 0;
var last = masks.length;
while (inductionVariable < last) {
var mask = masks[inductionVariable];
inductionVariable = inductionVariable + 1 | 0;
if (tmp_1 < mask.length) {
result = result | mask[tmp_1];
}
}
tmp_0[tmp_1] = result;
tmp = tmp + 1 | 0;
}
return tmp_0;
}
function objectCreate(proto) {
proto = proto === VOID ? null : proto;
return Object.create(proto);
}
function defineProp(obj, name, getter, setter) {
return Object.defineProperty(obj, name, {configurable: true, get: getter, set: setter});
}
function equals(obj1, obj2) {
if (obj1 == null) {
return obj2 == null;
}
if (obj2 == null) {
return false;
}
if (typeof obj1 === 'object' && typeof obj1.equals === 'function') {
return obj1.equals(obj2);
}
if (obj1 !== obj1) {
return obj2 !== obj2;
}
if (typeof obj1 === 'number' && typeof obj2 === 'number') {
var tmp;
if (obj1 === obj2) {
var tmp_0;
if (obj1 !== 0) {
tmp_0 = true;
} else {
// Inline function 'kotlin.js.asDynamic' call
var tmp_1 = 1 / obj1;
// Inline function 'kotlin.js.asDynamic' call
tmp_0 = tmp_1 === 1 / obj2;
}
tmp = tmp_0;
} else {
tmp = false;
}
return tmp;
}
return obj1 === obj2;
}
function protoOf(constructor) {
return constructor.prototype;
}
function createMetadata(kind, name, defaultConstructor, associatedObjectKey, associatedObjects, suspendArity) {
var undef = VOID;
var iid = kind === 'interface' ? generateInterfaceId() : VOID;
return {kind: kind, simpleName: name, associatedObjectKey: associatedObjectKey, associatedObjects: associatedObjects, suspendArity: suspendArity, $kClass$: undef, defaultConstructor: defaultConstructor, iid: iid};
}
function generateInterfaceId() {
if (globalInterfaceId === VOID) {
globalInterfaceId = 0;
}
// Inline function 'kotlin.js.unsafeCast' call
globalInterfaceId = globalInterfaceId + 1 | 0;
// Inline function 'kotlin.js.unsafeCast' call
return globalInterfaceId;
}
var globalInterfaceId;
function initMetadataFor(kind, ctor, name, defaultConstructor, parent, interfaces, suspendArity, associatedObjectKey, associatedObjects) {
if (!(parent == null)) {
ctor.prototype = Object.create(parent.prototype);
ctor.prototype.constructor = ctor;
}
var metadata = createMetadata(kind, name, defaultConstructor, associatedObjectKey, associatedObjects, suspendArity);
ctor.$metadata$ = metadata;
if (!(interfaces == null)) {
var receiver = !equals(metadata.iid, VOID) ? ctor : ctor.prototype;
receiver.$imask$ = implement(interfaces);
}
}
function initMetadataForClass(ctor, name, defaultConstructor, parent, interfaces, suspendArity, associatedObjectKey, associatedObjects) {
var kind = 'class';
initMetadataFor(kind, ctor, name, defaultConstructor, parent, interfaces, suspendArity, associatedObjectKey, associatedObjects);
}
function initMetadataForObject(ctor, name, defaultConstructor, parent, interfaces, suspendArity, associatedObjectKey, associatedObjects) {
var kind = 'object';
initMetadataFor(kind, ctor, name, defaultConstructor, parent, interfaces, suspendArity, associatedObjectKey, associatedObjects);
}
function initMetadataForLambda(ctor, parent, interfaces, suspendArity) {
initMetadataForClass(ctor, 'Lambda', VOID, parent, interfaces, suspendArity, VOID, VOID);
}
function initMetadataForCoroutine(ctor, parent, interfaces, suspendArity) {
initMetadataForClass(ctor, 'Coroutine', VOID, parent, interfaces, suspendArity, VOID, VOID);
}
function initMetadataForFunctionReference(ctor, parent, interfaces, suspendArity) {
initMetadataForClass(ctor, 'FunctionReference', VOID, parent, interfaces, suspendArity, VOID, VOID);
}
function initMetadataForCompanion(ctor, parent, interfaces, suspendArity) {
initMetadataForObject(ctor, 'Companion', VOID, parent, interfaces, suspendArity, VOID, VOID);
}
function get_VOID() {
_init_properties_void_kt__3zg9as();
return VOID;
}
var VOID;
var properties_initialized_void_kt_e4ret2;
function _init_properties_void_kt__3zg9as() {
if (!properties_initialized_void_kt_e4ret2) {
properties_initialized_void_kt_e4ret2 = true;
VOID = void 0;
}
}
function _UInt___init__impl__l7qpdl(data) {
return data;
}
function _UInt___get_data__impl__f0vqqw($this) {
return $this;
}
function stuff() {
// Inline function 'kotlin.apply' call
var this_0 = new Buffer();
// Inline function 'kotlin.contracts.contract' call
// Inline function 'stuff.<anonymous>' call
this_0.writeString_npol3u_k$('sup');
var buffer = this_0;
// Inline function 'kotlin.UInt.toInt' call
var this_1 = buffer.size_1;
return _UInt___get_data__impl__f0vqqw(this_1);
}
function Buffer() {
this.size_1 = _UInt___init__impl__l7qpdl(0);
}
protoOf(Buffer).writeString_npol3u_k$ = function (string) {
var tmp = this;
// Inline function 'kotlin.UInt.plus' call
var this_0 = this.size_1;
// Inline function 'kotlin.toUInt' call
var this_1 = string.length;
var other = _UInt___init__impl__l7qpdl(this_1);
tmp.size_1 = _UInt___init__impl__l7qpdl(_UInt___get_data__impl__f0vqqw(this_0) + _UInt___get_data__impl__f0vqqw(other) | 0);
};
//region block: init
Unit_instance = new Unit();
//endregion
//region block: exports
function $jsExportAll$(_) {
_.stuff = stuff;
}
$jsExportAll$(_);
if (typeof get_output !== "undefined") {
get_output();
output = new BufferedOutput();
_.output = get_output();
}
//endregion
return _;
})); which when dumped into function Buffer() {
this.size_1 = 0;
}
// ⋮
Buffer.prototype.writeString_npol3u_k$ = function(string) {
var this_0 = this.size_1, this_1 = string.length;
this.size_1 = this_0 + this_1 | 0;
}
// ⋮
_.stuff = function() {
var this_0 = new Buffer();
return this_0.writeString_npol3u_k$('sup'), this_0.size_1;
} which has completely eliminated the helper functions around the unsigned type. |
Yeah, I understand, but still, the same reasoning could be applied for high-level API, specifically https://github.com/Kotlin/KEEP/blob/master/proposals/unsigned-types.md#non-negative-integers Just let imagine the situation. That we need to read some amount of data in chunks, f.e May be, unsigned integers in this case could do more good than harm but at least now I don't see it |
But then you're implying the use of a minifier. |
Of course. Anyone serious about running anything on JS (let alone from another language which outputs JS) will be using a compile-time optimization step. kotlinc is not an optimizing compiler, and that's true for every backend target. But here, V8 will also inline all of It's not easy to read! Most of the assembly instructions deal with the JS stack bookkeeping, but if you read through the noise you can see the lookup of the Even easier is to just scroll down below the assembly and it tells you that both Of course we could also verify this with benchmarks which will show an |
I do remember reading this in the KEEP at some point. I find their argument in general to be poor, and contradicts part of the point of adding unsigned numbers in the first place. The specific example of How we choose to interpret the given bit-width of the number is as much part of the trade-off as it is in choosing a bit width to begin with. Otherwise why bother with adding
For the unsafe API I buy this argument on the basis of things like mechanical sympathy. For the high-level API, this is why languages feature checked and saturating mathematical operations (on both signed and unsigned types). But additionally, the
It very well might be the case that it doesn't make sense. But we (Okio people) never even had the chance to consider them anywhere. I just wanted to make sure somebody evaluated whether they made sense or not because this library does have that chance. |
You're not wrong, but K/JS mostly caters to the ones that don't want to deal (as much as possible) with the JS ecosystem. |
This might be a good precedent to finally materialize our approach to unsigned types and add it to API guidelines. In general, we avoid unsigned types for any type refinements and arithmetics, as well as we were not intending them be used in such contexts. When I approached the idea of using unsigned types as an indexing mechanism (not in IO tho, but in the standard library), the following things came across:
I'd say we'll need to duct-tape the prototype and see how it goes. |
Okio was written in Java before being ported to Kotlin, and binary compatibility meant we retained the use of signed numbers. With this library being a fresh take on its design, there is an opportunity to switch to unsigned numbers where it makes sense (and if it makes sense).
It certainly would be nice to never have to check values for being negative all over the place in the internals.
The concern, of course, is that there is enough overhead to make this not worthwhile. Or that the conversion ceremony is too much boilerplate.
I suspect the unsafe internals and unsafe APIs will still likely use signed
ByteArray
and signedInt
s, but perhaps the size and indexing ofBuffer
/ByteString
and all their APIs could switch.The text was updated successfully, but these errors were encountered: