-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path__init__.py
364 lines (313 loc) · 10.7 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import math
import torch
from transformers import GenerationConfig
from transformers.generation import (
LogitsProcessor,
LogitsProcessorList,
StoppingCriteriaList,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
MinPLogitsWarper,
)
from tqdm import tqdm
from graphviz import Digraph
import kgen.models as models
import kgen.executor.tipo as tipo
from kgen.formatter import seperate_tags, apply_format
from kgen.sampling.node_splitters import NodeSplitter
# Default format for experiment
DEFAULT_FORMAT = (
"<|special|>, <|characters|>, <|copyrights|>, "
"<|artist|>, <|general|>, <|quality|>, <|meta|>, <|rating|>"
)
#
DEFAULT_SAMPLING_CONFIG = {
"temperature": 1.0,
"top_k": 0,
"top_p": 0.0,
"min_p": 0.1,
}
class LogitsRecorder(LogitsProcessor):
def __init__(self):
self.scores = []
def clean(self):
self.scores = []
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
self.scores.append(scores.clone())
return scores
class LengthRecorder(LogitsProcessor):
def __init__(self):
self.inp_lengths = -1
self.final_lengths = -1
def clean(self):
self.inp_lengths = -1
self.final_lengths = -1
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if self.inp_lengths == -1:
self.inp_lengths = cur_len
self.final_lengths = cur_len + 1
return scores
def get_next(
prompt,
input_ids=None,
key_values=None,
recorder: LogitsRecorder = None,
splitter: NodeSplitter = None,
gen_kwargs={},
scoring="default",
single_token=False,
temperature=1.0,
top_k=0,
top_p=0.0,
min_p=0.1,
):
if input_ids is None:
inputs = models.tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(next(models.text_model.parameters()).device)
input_length = input_ids.shape[-1]
extra_kwargs = {}
if key_values is not None:
extra_kwargs["past_key_values"] = key_values
length_recorder = LengthRecorder()
processors = LogitsProcessorList()
processors.append(length_recorder)
if recorder:
recorder.clean()
processors.append(recorder)
if temperature != 1:
processors.append(TemperatureLogitsWarper(temperature))
if min_p != 0:
processors.append(MinPLogitsWarper(min_p))
if top_p != 0:
processors.append(TopPLogitsWarper(top_p))
if top_k != 0:
processors.append(TopKLogitsWarper(top_k))
stop_criteria = StoppingCriteriaList()
if splitter:
splitter.clean()
stop_criteria.append(splitter)
gen_kwargs["min_new_tokens"] = 1 if single_token else 4
gen_kwargs["max_new_tokens"] = 1 if single_token else 1024
gen_kwargs["return_dict_in_generate"] = True
gen_kwargs["output_scores"] = True
gen_kwargs["do_sample"] = True
generation_config = GenerationConfig(max_length=1024, **gen_kwargs)
with torch.no_grad():
generation_output = models.text_model.generate(
input_ids=input_ids,
generation_config=generation_config,
logits_processor=processors,
stopping_criteria=stop_criteria,
**extra_kwargs,
)
output_sequence = generation_output.sequences
if recorder is not None:
scores = recorder.scores
min_score = 1
max_score = 0
total_score = 1
total = 0
for i, (score, choosed) in enumerate(
zip(scores, output_sequence[0][input_length:])
):
# seperator usually has a very high score, so we skip it
if not single_token and choosed == output_sequence[0][-1]:
continue
if not single_token and choosed == models.tokenizer.eos_token_id:
break
score = torch.softmax(score, dim=-1)[0]
min_score = min(min_score, score[choosed].item())
max_score = max(max_score, score[choosed].item())
total_score *= score[choosed]
total += 1
avg_score = (total_score ** (1 / total)).item()
else:
min_score = 0
max_score = 0
avg_score = 0
return (
output_sequence,
generation_output.past_key_values,
models.tokenizer.decode(output_sequence[0]),
# avg_score,
(min_score + max_score + avg_score) / 3,
length_recorder.inp_lengths,
length_recorder.final_lengths,
)
def clone_kv(past_key_values):
if past_key_values is None:
return None
return tuple(tuple(kv.clone() for kv in layer) for layer in past_key_values)
def move_kv(past_key_values, device="cpu"):
if past_key_values is None:
return None
return tuple(tuple(kv.to(device) for kv in layer) for layer in past_key_values)
class SampleNode:
def __init__(
self, prompt=None, inputs=None, past_key_values=None, score=0, parent=None
):
self.prompt: str = prompt.replace("<s>", "").replace("</s>", "").strip()
self._inputs: torch.Tensor = inputs
self._past_key_values_device = inputs.device if inputs is not None else "cpu"
self._past_key_values: tuple[tuple[torch.FloatTensor]] = move_kv(
past_key_values
)
self.score: float = score
self.depth = 0 if parent is None else parent.depth + 1
self.parent: SampleNode = parent
self.childs: list[SampleNode] = []
self.have_leaf: bool = False
if inputs is not None:
self.is_leaf: bool = self.inputs[0][-1] == models.tokenizer.eos_token_id
else:
self.is_leaf: bool = False
self.is_leaf = bool(self.is_leaf)
@property
def inputs(self):
if self._inputs is None:
return None
return self._inputs.clone()
@property
def past_key_values(self):
return move_kv(self._past_key_values, self._past_key_values_device)
def gen_new_child(self, splitter=None, ids_splitter=None):
recorder = LogitsRecorder()
splitter = NodeSplitter(splitter, ids_splitter, input_length=len(prompt))
out_seq, past_key_values, decode, score, inp_len, final_len = get_next(
self.prompt,
input_ids=self.inputs,
key_values=self.past_key_values,
recorder=recorder,
splitter=splitter,
)
new_child = SampleNode(
prompt=decode,
inputs=out_seq,
past_key_values=past_key_values,
score=score,
)
self.childs.append(new_child)
if new_child.is_leaf:
now = self
while now.parent is not None:
now.parent.have_leaf = True
now = now.parent
return new_child
def greedy_tree_sample(prompt, variations=7):
splitters = [lambda x, i: (x[i:].split("tags")[-1].count(",") > 4)]
splitter = NodeSplitter(splitters, input_length=len(prompt))
pbar = tqdm(total=variations)
total_gen = 0
root = SampleNode(prompt=prompt)
for _ in range(variations):
root.gen_new_child(splitter=splitter)
total_gen += 1
results = []
for child in root.childs:
if child.is_leaf:
results.append(child.prompt)
while len(results) < variations:
now = root
while now.childs:
next = max(now.childs, key=lambda x: x.score if not x.is_leaf else 0)
if next.is_leaf:
break
now = next
now = new_child = now.gen_new_child(splitter=splitter)
while now.parent:
now.parent.score = min(now.parent.score, new_child.score)
now = now.parent
total_gen += 1
if new_child.is_leaf:
pbar.update(1)
results.append(new_child.prompt)
print(total_gen)
return results
def conventional_sample(
prompt, variations=7, temperature=1.0, top_k=0, top_p=0.0, min_p=0.1
):
total_gen = 0
results = []
for _ in range(variations):
out_seq, past_key_values, decode, score, inp_len, final_len = get_next(
prompt,
input_ids=None,
key_values=None,
temperature=temperature,
top_k=top_k,
top_p=top_p,
min_p=min_p,
)
total_gen += final_len - inp_len
results.append((decode, score))
print("Total output tokens:", total_gen)
return results
# Function to draw the tree
def draw_tree(node: SampleNode):
idx = 0
def assign_idx(node: SampleNode):
nonlocal idx
node.idx = idx
idx += 1
for child in node.childs:
assign_idx(child)
assign_idx(node)
dot = Digraph()
def add_nodes_edges(node: SampleNode):
if node.is_leaf:
dot.node(str(f"leaf#{node.idx}"))
dot.edge(str(node.idx), str(f"leaf#{node.idx}"))
elif node.simulated_result is not None:
dot.node(str(f"sim#{node.idx}"))
dot.edge(str(node.idx), str(f"sim#{node.idx}"))
for child in node.childs:
dot.node(str(child.idx))
dot.edge(str(node.idx), str(child.idx))
add_nodes_edges(child)
dot.node(str(node.idx)) # Add root node
add_nodes_edges(node)
return dot
def _count(node: SampleNode, depth: int = 0, total_childs=None, total_nodes=None):
if node.is_leaf:
return
if depth not in total_childs:
total_childs[depth] = 0
total_nodes[depth] = 0
total_childs[depth] += len(node.childs)
total_nodes[depth] += 1
for child in node.childs:
_count(child, depth + 1, total_childs, total_nodes)
def count(node: SampleNode):
total_childs = {}
total_nodes = {}
_count(node, total_childs=total_childs, total_nodes=total_nodes)
return total_childs, total_nodes
if __name__ == "__main__":
models.load_model(
"KBlueLeaf/TIPO-100M",
device="cuda",
)
meta, operations, general, prompt = tipo.parse_tipo_request(
seperate_tags("scenery, wide shot, masterpiece, safe".split(",")),
"",
)
mode, length, expand = operations[0]
prompt = tipo.apply_tipo_prompt(meta, general, prompt, mode, length, expand)
results = conventional_sample(prompt, 1024)
gen_per_prompt = [x[1] for x in results]
print(sum(gen_per_prompt) / len(gen_per_prompt))
with open("./test/beam_search.txt", "w", encoding="utf-8") as f:
for result, gen in sorted(results):
result = tipo.parse_tipo_result(result)
formatted_output = apply_format(result, DEFAULT_FORMAT)
f.write(formatted_output + "\n")
# for result in sorted(results):
# print("=" * 20)
# print(result)
# print("=" * 20)