-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdash_app.py
271 lines (258 loc) · 15 KB
/
dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import dash
from dash import dcc, html
from dash.dependencies import Input, Output
from datetime import datetime
import pandas as pd
import numpy as np
import sys
import os
import random
from src.DP_epidemiology.utilities import *
from src.DP_epidemiology.hotspot_analyzer import hotspot_analyzer
from src.DP_epidemiology.mobility_analyzer import mobility_analyzer
from src.DP_epidemiology.pandemic_adherence_analyzer import pandemic_adherence_analyzer
from src.DP_epidemiology.contact_matrix import get_age_group_count_map, get_contact_matrix_country
import plotly.express as px
import plotly.graph_objects as go
import opendp.prelude as dp
dp.enable_features("contrib", "floating-point", "honest-but-curious")
def create_dash_app(df: pd.DataFrame, df_google_mobility_data: pd.DataFrame = None):
cities = {
"Medellin": (6.2476, -75.5658),
"Bogota": (4.7110, -74.0721),
"Brasilia": (-15.7975, -47.8919),
"Santiago": (-33.4489, -70.6693)
}
category_list = ['grocery_and_pharmacy', 'transit_stations', 'retail_and_recreation', "other"]
entry_types = ["luxury", "essential", "other"]
age_groups = ['0-4', '5-9', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75+']
scaling_factor = pd.read_csv('fractions_offline.csv')['0'].values
P = np.array([4136344, 4100716, 3991988, 3934088, 4090149, 4141051, 3895117, 3439202,
3075077, 3025100, 3031855, 2683253, 2187561, 1612948, 1088448, 1394217])
consumption_distribution_raw = pd.read_csv(r"consumption_distribution.csv")
categories = consumption_distribution_raw['categories'].values
consumption_distribution = {}
for category in categories:
consumption_distribution[category] = consumption_distribution_raw[consumption_distribution_raw['categories'] == category].values[0][:-1]
app = dash.Dash(__name__)
app.layout = html.Div([
dcc.Tabs([
dcc.Tab(label='Hotspot Analysis', children=[
dcc.DatePickerSingle(id='hotspot-start-date-picker', date='2019-01-01'),
dcc.DatePickerSingle(id='hotspot-end-date-picker', date='2019-12-31'),
dcc.Slider(id='hotspot-epsilon-slider', min=0, max=10, step=0.1, value=1, marks={i: str(i) for i in range(11)}),
dcc.Dropdown(id='hotspot-city-dropdown', options=[{'label': city, 'value': city} for city in cities.keys()], value='Medellin'),
dcc.Graph(id='hotspot-geo-plot')
]),
dcc.Tab(label='Mobility Analysis', children=[
dcc.DatePickerSingle(id='mobility-start-date-picker', date='2019-01-01'),
dcc.DatePickerSingle(id='mobility-end-date-picker', date='2019-12-31'),
dcc.Slider(id='mobility-epsilon-slider', min=0, max=10, step=0.1, value=1, marks={i: str(i) for i in range(11)}),
dcc.Dropdown(id='mobility-city-dropdown', options=[{'label': city, 'value': city} for city in cities.keys()], value='Medellin'),
dcc.Dropdown(id='mobility-category-list-dropdown', options=[{'label': category, 'value': category} for category in category_list], value='transit_stations'),
dcc.Graph(id='mobility-graph')
]),
dcc.Tab(label='Pandemic Adherence Analysis', children=[
dcc.DatePickerSingle(id='adherence-start-date-picker', date='2019-01-01'),
dcc.DatePickerSingle(id='adherence-end-date-picker', date='2019-12-31'),
dcc.Slider(id='adherence-epsilon-slider', min=0, max=10, step=0.1, value=1, marks={i: str(i) for i in range(11)}),
dcc.Dropdown(id='adherence-city-dropdown', options=[{'label': city, 'value': city} for city in cities.keys()], value='Medellin'),
dcc.Dropdown(id='adherence-entry-type-dropdown', options=[{'label': entry_type, 'value': entry_type} for entry_type in entry_types], value='luxury'),
dcc.Graph(id='adherence-graph')
]),
dcc.Tab(label='Contact Matrix Analysis', children=[
dcc.DatePickerSingle(id='matrix-start-date-picker', date='2019-01-01'),
dcc.DatePickerSingle(id='matrix-end-date-picker', date='2019-12-31'),
dcc.Slider(id='matrix-epsilon-slider', min=0, max=10, step=0.1, value=1, marks={i: str(i) for i in range(11)}),
dcc.Dropdown(id='matrix-city-dropdown', options=[{'label': city, 'value': city} for city in cities.keys()], value='Medellin'),
dcc.Graph(id='matrix-heatmap'),
html.Div(id='matrix-output', style={'whiteSpace': 'pre-line'})
]),
dcc.Tab(label='Mobility Validation', children=[
dcc.DatePickerSingle(id='validation-start-date-picker', date='2020-02-15'),
dcc.DatePickerSingle(id='validation-end-date-picker', date='2020-12-31'),
dcc.Slider(id='validation-epsilon-slider', min=0, max=10, step=0.1, value=1, marks={i: str(i) for i in range(11)}),
dcc.Dropdown(id='validation-city-dropdown', options=[{'label': city, 'value': city} for city in cities.keys()], value='Medellin'),
dcc.Dropdown(id='validation-category-list-dropdown', options=[{'label': category, 'value': category} for category in category_list], value='transit_stations'),
dcc.Graph(id='validation-mobility-graph')
])
])
])
@app.callback(
Output('hotspot-geo-plot', 'figure'),
[Input('hotspot-start-date-picker', 'date'),
Input('hotspot-end-date-picker', 'date'),
Input('hotspot-epsilon-slider', 'value'),
Input('hotspot-city-dropdown', 'value')]
)
def update_hotspot_graph(start_date, end_date, epsilon, city):
start_date = datetime.strptime(start_date, '%Y-%m-%d')
end_date = datetime.strptime(end_date, '%Y-%m-%d')
output = hotspot_analyzer(df, start_date, end_date, city, epsilon)
filtered_df = get_coordinates(output)
fig = px.scatter_geo(
filtered_df,
lat='Latitude',
lon='Longitude',
color='nb_transactions',
size='nb_transactions',
hover_name='merch_postal_code',
hover_data={'merch_postal_code': True, 'nb_transactions': True, 'Latitude': False, 'Longitude': False},
projection='mercator',
title=f"Transaction Locations in {city} from {start_date.date()} to {end_date.date()} with epsilon={epsilon}",
color_continuous_scale=px.colors.sequential.Plasma
)
fig.update_geos(center=dict(lat=cities[city][0], lon=cities[city][1]), projection_scale=2.5)
return fig
@app.callback(
Output('mobility-graph', 'figure'),
[Input('mobility-start-date-picker', 'date'),
Input('mobility-end-date-picker', 'date'),
Input('mobility-city-dropdown', 'value'),
Input('mobility-category-list-dropdown', 'value'),
Input('mobility-epsilon-slider', 'value')]
)
def update_mobility_graph(start_date, end_date, city_filter, category, epsilon):
start_date = datetime.strptime(start_date, '%Y-%m-%d')
end_date = datetime.strptime(end_date, '%Y-%m-%d')
filtered_df = mobility_analyzer(df, start_date, end_date, city_filter, category, epsilon)
fig = px.line(
filtered_df,
x='date',
y='nb_transactions',
title=f"Mobility Analysis for {city_filter} and category {category} from {start_date.date()} to {end_date.date()} with epsilon={epsilon}",
labels={'nb_transactions': 'Number of Transactions', 'date': 'Date'}
)
if city_filter == "Bogota":
events = [
("Isolation Start Drill", "2020-03-20"),
("National Quarantine", "2020-03-26"),
("Gender Restriction", "2020-04-16"),
("Day Without VAT (IVA)", "2020-06-19"),
("Lockdown 1", "2020-07-15"),
("Lockdown 2", "2020-07-30"),
("Lockdown 3", "2020-08-13"),
("Lockdown 4", "2020-08-20"),
("End of National Quarantine", "2020-09-04"),
("Day Without VAT", "2020-11-19"),
("Candle Day", "2020-12-07"),
("Start of Novenas", "2020-12-16"),
("Lockdown 1 (2021)", "2021-01-05"),
("Lockdown 2 (2021)", "2021-01-12"),
("Lockdown 3 (2021)", "2021-01-18"),
("Lockdown 4 (2021)", "2021-01-28"),
("Holy Week", "2021-03-28"),
("Model 4x3", "2021-04-06"),
("Model 4x3 (Extension)", "2021-04-06"),
("Vaccination Stage 1", "2021-02-18"),
("Vaccination Stage 2", "2021-03-08"),
("Vaccination Stage 3", "2021-05-22"),
("Vaccination Stage 4", "2021-06-17"),
("Vaccination Stage 5", "2021-07-17"),
("Riots and Social Unrest", "2021-05-01")
]
for event, date in events:
fig.add_shape(type="line", x0=date, y0=0, x1=date, y1=1, xref='x', yref='paper', line=dict(color="Red", width=2, dash="dash"))
fig.add_annotation(x=date, y=1, xref='x', yref='paper', text=event, showarrow=True, arrowhead=1, ax=-10, ay=-40, font=dict(color="Red"))
return fig
@app.callback(
Output('adherence-graph', 'figure'),
[Input('adherence-start-date-picker', 'date'),
Input('adherence-end-date-picker', 'date'),
Input('adherence-city-dropdown', 'value'),
Input('adherence-entry-type-dropdown', 'value'),
Input('adherence-epsilon-slider', 'value')]
)
def update_adherence_graph(start_date, end_date, city_filter, essential_or_luxury, epsilon):
start_date = datetime.strptime(start_date, '%Y-%m-%d')
end_date = datetime.strptime(end_date, '%Y-%m-%d')
filtered_df = pandemic_adherence_analyzer(df, start_date, end_date, city_filter, essential_or_luxury, epsilon)
fig = px.line(
filtered_df,
x='date',
y='nb_transactions',
title=f"Pandemic adherence Analysis for {city_filter} from {start_date.date()} to {end_date.date()} with epsilon={epsilon}",
labels={'nb_transactions': 'Number of Transactions', 'date': 'Date'}
)
if city_filter == "Bogota":
events = [
("Isolation Start Drill", "2020-03-20"),
("National Quarantine", "2020-03-26"),
("Gender Restriction", "2020-04-16"),
("Day Without VAT (IVA)", "2020-06-19"),
("Lockdown 1", "2020-07-15"),
("Lockdown 2", "2020-07-30"),
("Lockdown 3", "2020-08-13"),
("Lockdown 4", "2020-08-20"),
("End of National Quarantine", "2020-09-04"),
("Day Without VAT", "2020-11-19"),
("Candle Day", "2020-12-07"),
("Start of Novenas", "2020-12-16"),
("Lockdown 1 (2021)", "2021-01-05"),
("Lockdown 2 (2021)", "2021-01-12"),
("Lockdown 3 (2021)", "2021-01-18"),
("Lockdown 4 (2021)", "2021-01-28"),
("Holy Week", "2021-03-28"),
("Model 4x3", "2021-04-06"),
("Model 4x3 (Extension)", "2021-04-06"),
("Vaccination Stage 1", "2021-02-18"),
("Vaccination Stage 2", "2021-03-08"),
("Vaccination Stage 3", "2021-05-22"),
("Vaccination Stage 4", "2021-06-17"),
("Vaccination Stage 5", "2021-07-17"),
("Riots and Social Unrest", "2021-05-01")
]
for event, date in events:
fig.add_shape(type="line", x0=date, y0=0, x1=date, y1=1, xref='x', yref='paper', line=dict(color="Red", width=2, dash="dash"))
fig.add_annotation(x=date, y=1, xref='x', yref='paper', text=event, showarrow=True, arrowhead=1, ax=-10, ay=-40, font=dict(color="Red"))
return fig
@app.callback(
[Output('matrix-heatmap', 'figure'),
Output('matrix-output', 'children')],
[Input('matrix-start-date-picker', 'date'),
Input('matrix-end-date-picker', 'date'),
Input('matrix-city-dropdown', 'value'),
Input('matrix-epsilon-slider', 'value')]
)
def update_contact_matrix(start_date, end_date, city, epsilon):
start_date = datetime.strptime(start_date, '%Y-%m-%d')
end_date = datetime.strptime(end_date, '%Y-%m-%d')
counts_per_city = []
for city in cities:
counts = get_age_group_count_map(df, age_groups, consumption_distribution, start_date, end_date, city)
counts_per_city.append(list(counts.values()))
contact_matrix = get_contact_matrix_country(counts_per_city, P, scaling_factor)
fig = px.imshow(contact_matrix, labels=dict(x="Age Group", y="Age Group", color="Contact Rate"), x=age_groups, y=age_groups, color_continuous_scale='viridis')
matrix_output = f"Contact Matrix:\n{np.array_str(contact_matrix, precision=2, suppress_small=True)}"
return fig, matrix_output
@app.callback(
Output('validation-mobility-graph', 'figure'),
[Input('validation-start-date-picker', 'date'),
Input('validation-end-date-picker', 'date'),
Input('validation-city-dropdown', 'value'),
Input('validation-category-list-dropdown', 'value'),
Input('validation-epsilon-slider', 'value')]
)
def update_validation_graph(start_date, end_date, city_filter, category, epsilon):
start_date = datetime.strptime(start_date, '%Y-%m-%d')
end_date = datetime.strptime(end_date, '%Y-%m-%d')
filtered_df_transactional = mobility_analyzer(df, start_date, end_date, city_filter, category, epsilon)
offset = filtered_df_transactional["date"].iloc[0]
filtered_df_google = preprocess_google_mobility(df_google_mobility_data, start_date, end_date, city_filter, category, offset)
fig = go.Figure()
fig.add_trace(go.Scatter(x=filtered_df_transactional['date'], y=filtered_df_transactional['nb_transactions'], mode='lines', name='Transactional Mobility', yaxis='y1'))
fig.add_trace(go.Scatter(x=filtered_df_google['date'], y=filtered_df_google[category], mode='lines', name='Google Mobility', yaxis='y2'))
fig.update_layout(
title=f"Mobility Analysis for {city_filter} and category {category} from {start_date.date()} to {end_date.date()} with epsilon={epsilon}",
xaxis_title='Date',
yaxis=dict(title='Transactional Mobility', titlefont=dict(color='blue'), tickfont=dict(color='blue')),
yaxis2=dict(title='Google Mobility', titlefont=dict(color='red'), tickfont=dict(color='red'), overlaying='y', side='right'),
legend_title='Data Source'
)
return fig
return app
# Example usage:
df = pd.read_csv(r'D:\workspace\pet_local\technical_phase_data.csv')
df_google_mobility_data = pd.read_csv('D:\workspace\PETs_challenge_data.csv')
app = create_dash_app(df, df_google_mobility_data)
app.run_server(debug=True)