Skip to content

Latest commit

 

History

History
70 lines (46 loc) · 3 KB

README.md

File metadata and controls

70 lines (46 loc) · 3 KB

Depth-Aware Concealed Crop Detection in Dense Agricultural Scenes (CVPR2024)

Overview

  • Our ACOD-12K

Dataset

  • Our RISNet

Model

Usage

The training and testing experiments are conducted using PyTorch with a single RTX 3090 GPU of 24 GB Memory.

Dependencies

  • Creating a virtual environment in terminal: conda create -n RISNet python=3.8
  • Installing necessary packages: pip install -r requirements.txt

Datasets

Our ACOD-12K can be found in Huggingface or Baidu Drive(0vy7)

Training

  • The pretrained model is stored in Google Drive and Baidu Drive(51sr). After downloading, please change the file path in the corresponding code.

  • You can use our default configuration to train your own RISNet, like this:

   python Train.py --epoch 100 --lr 1e-4 --batchsize 4 --trainsize 704 --train_path Your_dataset_path --save_path Your_save_path

Testing

  • Our well-trained model is stored in Google Drive and Baidu Drive(4sgg). After downloading, please change the file path in the corresponding code.
  • You can use our default configuration to generate the final prediction map, like this:
   python Test.py --testsize 704 --pth_path Your_checkpoint_path --test_path Your_dataset_path

Evaluation

Results

Concealed Crop Detection(CCD)

Concealed Object Detection(COD)

Citation

If you find RISNet useful for your research and applications, please cite using this BibTeX:

@inproceedings{wang2024depth,
  title={Depth-Aware Concealed Crop Detection in Dense Agricultural Scenes},
  author={Wang, Liqiong and Yang, Jinyu and Zhang, Yanfu and Wang, Fangyi and Zheng, Feng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={17201--17211},
  year={2024}
}