-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathvtkStatisticsAlgorithm.h
329 lines (283 loc) · 11 KB
/
vtkStatisticsAlgorithm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-FileCopyrightText: Copyright 2011 Sandia Corporation
// SPDX-License-Identifier: LicenseRef-BSD-3-Clause-Sandia-USGov
/**
* @class vtkStatisticsAlgorithm
* @brief Base class for statistics algorithms
*
*
* All statistics algorithms can conceptually be operated with several operations:
* * Learn: given an input data set, calculate a minimal statistical model (e.g.,
* sums, raw moments, joint probabilities).
* * Derive: given an input minimal statistical model, derive the full model
* (e.g., descriptive statistics, quantiles, correlations, conditional
* probabilities).
* NB: It may be, or not be, a problem that a full model was not derived. For
* instance, when doing parallel calculations, one only wants to derive the full
* model after all partial calculations have completed. On the other hand, one
* can also directly provide a full model, that was previously calculated or
* guessed, and not derive a new one.
* * Assess: given an input data set, input statistics, and some form of
* threshold, assess a subset of the data set.
* * Test: perform at least one statistical test.
* Therefore, a vtkStatisticsAlgorithm has the following ports
* * 3 optional input ports:
* * Data (vtkTable)
* * Parameters to the learn operation (vtkTable)
* * Input model (vtkMultiBlockDataSet)
* * 3 output ports:
* * Data (input annotated with assessments when the Assess operation is ON).
* * Output model (identical to the input model when Learn operation is OFF).
* * Output of statistical tests. Some engines do not offer such tests yet, in
* which case this output will always be empty even when the Test operation is ON.
*
* @par Thanks:
* Thanks to Philippe Pebay and David Thompson from Sandia National Laboratories
* for implementing this class.
* Updated by Philippe Pebay, Kitware SAS 2012
*/
#ifndef vtkStatisticsAlgorithm_h
#define vtkStatisticsAlgorithm_h
#include "vtkFiltersStatisticsModule.h" // For export macro
#include "vtkTableAlgorithm.h"
VTK_ABI_NAMESPACE_BEGIN
class vtkDataObjectCollection;
class vtkMultiBlockDataSet;
class vtkStdString;
class vtkStringArray;
class vtkVariant;
class vtkVariantArray;
class vtkDoubleArray;
class vtkStatisticsAlgorithmPrivate;
class VTKFILTERSSTATISTICS_EXPORT vtkStatisticsAlgorithm : public vtkTableAlgorithm
{
public:
vtkTypeMacro(vtkStatisticsAlgorithm, vtkTableAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* enumeration values to specify input port types
*/
enum InputPorts
{
INPUT_DATA = 0, //!< Port 0 is for learn data
LEARN_PARAMETERS = 1, //!< Port 1 is for learn parameters (initial guesses, etc.)
INPUT_MODEL = 2 //!< Port 2 is for a priori models
};
/**
* enumeration values to specify output port types
*/
enum OutputIndices
{
OUTPUT_DATA = 0, //!< Output 0 mirrors the input data, plus optional assessment columns
OUTPUT_MODEL = 1, //!< Output 1 contains any generated model
OUTPUT_TEST = 2 //!< Output 2 contains result of statistical test(s)
};
/**
* A convenience method for setting learn input parameters (if one is expected or allowed).
* It is equivalent to calling SetInputConnection( 1, params );
*/
virtual void SetLearnOptionParameterConnection(vtkAlgorithmOutput* params)
{
this->SetInputConnection(vtkStatisticsAlgorithm::LEARN_PARAMETERS, params);
}
/**
* A convenience method for setting learn input parameters (if one is expected or allowed).
* It is equivalent to calling SetInputData( 1, params );
*/
virtual void SetLearnOptionParameters(vtkDataObject* params)
{
this->SetInputData(vtkStatisticsAlgorithm::LEARN_PARAMETERS, params);
}
/**
* A convenience method for setting the input model connection (if one is expected or allowed).
* It is equivalent to calling SetInputConnection( 2, model );
*/
virtual void SetInputModelConnection(vtkAlgorithmOutput* model)
{
this->SetInputConnection(vtkStatisticsAlgorithm::INPUT_MODEL, model);
}
/**
* A convenience method for setting the input model (if one is expected or allowed).
* It is equivalent to calling SetInputData( 2, model );
*/
virtual void SetInputModel(vtkDataObject* model)
{
this->SetInputData(vtkStatisticsAlgorithm::INPUT_MODEL, model);
}
///@{
/**
* Set/Get the Learn operation.
*/
vtkSetMacro(LearnOption, bool);
vtkGetMacro(LearnOption, bool);
///@}
///@{
/**
* Set/Get the Derive operation.
*/
vtkSetMacro(DeriveOption, bool);
vtkGetMacro(DeriveOption, bool);
///@}
///@{
/**
* Set/Get the Assess operation.
*/
vtkSetMacro(AssessOption, bool);
vtkGetMacro(AssessOption, bool);
///@}
///@{
/**
* Set/Get the Test operation.
*/
vtkSetMacro(TestOption, bool);
vtkGetMacro(TestOption, bool);
///@}
///@{
/**
* Set/Get the number of tables in the primary model.
*/
vtkSetMacro(NumberOfPrimaryTables, vtkIdType);
vtkGetMacro(NumberOfPrimaryTables, vtkIdType);
///@}
///@{
/**
* Set/get assessment names.
*/
virtual void SetAssessNames(vtkStringArray*);
vtkGetObjectMacro(AssessNames, vtkStringArray);
///@}
///@{
/**
* A base class for a functor that assesses data.
*/
class AssessFunctor
{
public:
virtual void operator()(vtkDoubleArray*, vtkIdType) = 0;
virtual ~AssessFunctor() = default;
};
///@}
/**
* Add or remove a column from the current analysis request.
* Once all the column status values are set, call RequestSelectedColumns()
* before selecting another set of columns for a different analysis request.
* The way that columns selections are used varies from algorithm to algorithm.
* Note: the set of selected columns is maintained in vtkStatisticsAlgorithmPrivate::Buffer
* until RequestSelectedColumns() is called, at which point the set is appended
* to vtkStatisticsAlgorithmPrivate::Requests.
* If there are any columns in vtkStatisticsAlgorithmPrivate::Buffer at the time
* RequestData() is called, RequestSelectedColumns() will be called and the
* selection added to the list of requests.
*/
virtual void SetColumnStatus(const char* namCol, int status);
/**
* Set the status of each and every column in the current request to OFF (0).
*/
virtual void ResetAllColumnStates();
/**
* Use the current column status values to produce a new request for statistics
* to be produced when RequestData() is called. See SetColumnStatus() for more information.
*/
virtual int RequestSelectedColumns();
/**
* Empty the list of current requests.
*/
virtual void ResetRequests();
/**
* Return the number of requests.
* This does not include any request that is in the column-status buffer
* but for which RequestSelectedColumns() has not yet been called (even though
* it is possible this request will be honored when the filter is run -- see SetColumnStatus()
* for more information).
*/
virtual vtkIdType GetNumberOfRequests();
/**
* Return the number of columns for a given request.
*/
virtual vtkIdType GetNumberOfColumnsForRequest(vtkIdType request);
/**
* Provide the name of the \a c-th column for the \a r-th request.
* For the version of this routine that returns an integer,
* if the request or column does not exist because \a r or \a c is out of bounds,
* this routine returns 0 and the value of \a columnName is unspecified.
* Otherwise, it returns 1 and the value of \a columnName is set.
* For the version of this routine that returns const char*,
* if the request or column does not exist because \a r or \a c is out of bounds,
* the routine returns nullptr. Otherwise it returns the column name.
* This version is not thread-safe.
*/
virtual const char* GetColumnForRequest(vtkIdType r, vtkIdType c);
virtual int GetColumnForRequest(vtkIdType r, vtkIdType c, vtkStdString& columnName);
/**
* Convenience method to create a request with a single column name \p namCol in a single
* call; this is the preferred method to select columns, ensuring selection consistency
* (a single column per request).
* Warning: no name checking is performed on \p namCol; it is the user's
* responsibility to use valid column names.
*/
void AddColumn(const char* namCol);
/**
* Convenience method to create a request with a single column name pair
* (\p namColX, \p namColY) in a single call; this is the preferred method to select
* columns pairs, ensuring selection consistency (a pair of columns per request).
* Unlike SetColumnStatus(), you need not call RequestSelectedColumns() after AddColumnPair().
* Warning: \p namColX and \p namColY are only checked for their validity as strings;
* no check is made that either are valid column names.
*/
void AddColumnPair(const char* namColX, const char* namColY);
/**
* A convenience method (in particular for access from other applications) to
* set parameter values of Learn mode.
* Return true if setting of requested parameter name was executed, false otherwise.
* NB: default method (which is sufficient for most statistics algorithms) does not
* have any Learn parameters to set and always returns false.
*/
virtual bool SetParameter(const char* parameter, int index, vtkVariant value);
/**
* Given a collection of models, calculate aggregate model
*/
virtual void Aggregate(vtkDataObjectCollection*, vtkMultiBlockDataSet*) = 0;
protected:
vtkStatisticsAlgorithm();
~vtkStatisticsAlgorithm() override;
int FillInputPortInformation(int port, vtkInformation* info) override;
int FillOutputPortInformation(int port, vtkInformation* info) override;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
/**
* Execute the calculations required by the Learn option, given some input Data
*/
virtual void Learn(vtkTable*, vtkTable*, vtkMultiBlockDataSet*) = 0;
/**
* Execute the calculations required by the Derive option.
*/
virtual void Derive(vtkMultiBlockDataSet*) = 0;
/**
* Execute the calculations required by the Assess option.
*/
virtual void Assess(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) = 0;
/**
* A convenience implementation for generic assessment with variable number of variables.
*/
void Assess(vtkTable*, vtkMultiBlockDataSet*, vtkTable*, int);
/**
* Execute the calculations required by the Test option.
*/
virtual void Test(vtkTable*, vtkMultiBlockDataSet*, vtkTable*) = 0;
/**
* A pure virtual method to select the appropriate assessment functor.
*/
virtual void SelectAssessFunctor(
vtkTable* outData, vtkDataObject* inMeta, vtkStringArray* rowNames, AssessFunctor*& dfunc) = 0;
vtkIdType NumberOfPrimaryTables;
bool LearnOption;
bool DeriveOption;
bool AssessOption;
bool TestOption;
vtkStringArray* AssessNames;
vtkStatisticsAlgorithmPrivate* Internals;
private:
vtkStatisticsAlgorithm(const vtkStatisticsAlgorithm&) = delete;
void operator=(const vtkStatisticsAlgorithm&) = delete;
};
VTK_ABI_NAMESPACE_END
#endif