
 v

제목 

이름

 v

MLOps: Model Serving Architecture
With BentoML  

Naver Biz CIC AI Serving Dev

KimSoungRyoul

https://github.com/KimSoungRyoul

https://github.com/KimSoungRyoul/PyConKR2023-ModelServing

 v

제목 

이름

 v

Index

● What is MLOps?

● Model Serving Framework

● Model Serving Platform

 v

제목 

이름

What is MLOps ? [Researcher & ML Engineer]

https://ml-ops.org/content/mlops-principles
퍼가요: 싸이월드(2000년대 중후반 SNS)에서 게시글을 인용또는 그대로 가져올때 답글로 “퍼가요”라고 남기는 것이 예의였다.

지금으로 따지면 Github에서 Repo나 gist에서 fork 해올때 star를 누르는 것과 비슷한 느낌

https://namu.wiki/w/%EC%8B%B8%EC%9D%B4%EC%9B%94%EB%93%9C

 v

제목 

이름

What is MLOps ? [MLEnginner & MLOps Engineer]

https://ml-ops.org/content/mlops-principles

In Academia, I was an ML PhD,
But in corporate,
Am I just a ShellScript Master?

● Building the model is crucial, but there's
so much more to do beyond that.

● From model implementation to
deployment to operations, there's a need
for automation through platform
construction. Managing and building this
is known as MLOps. MLOps encompasses
both model implementation and
training.

● Model Serving' is just one part of this
broader MLOps spectrum.

 v

제목 

이름

What is Model Serving? ML Serving EcoSystem

 v

제목 

이름

Model Serving Framework

 v

제목 

이름

What is Model Serving? ML Serving EcoSystem Detail

 v

제목 

이름

 Web Framework 와 Model Serving Framework have a lot of common features

For example
● Protocol support (http, grpc)
● Serialization
● Api docs (OAS 3.x)
● …

But, each has specialized features for their respective areas

For example In Model Serving Framework

● Support builtin default Metrics & Log

● Manage model backend worker process count

About Model Serving Framework

Rdb,
queue,
cacheDB

 v

제목 

이름

Model Serving: Architecture Concept

 v

제목 

이름

Model Serving: Architecture Concept

Low Level): computer friendly 

high Level): human friendly 

ex: python is more human friendly than C  

 v

제목 

이름

Model Serving: Architecture Concept

Low Level): computer friendly 

high Level): human friendly 

ex: python is more human friendly than C  

 v

제목 

이름

Model Serving: Architecture Concept

Model server is simple, there is only two component  

● Manage Http, grpc connection & pre,post process logic : Front API Server  

● inference Model worker process : Backend(Model) Worker 

 

 

TorchServe Architecture TensorflowServing
Architecture

Triton Inference Server
Architecture

https://pytorch.org/serve/index.html
https://www.tensorflow.org/tfx/serving/architecture

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/architecture.html

 v

제목 

이름

Model Serving: Architecture Concept

https://pytorch.org/serve/index.html
https://www.tensorflow.org/tfx/serving/architecture

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/architecture.html

 v

제목 

이름

Model Serving: Architecture Concept

https://pytorch.org/serve/index.html
https://www.tensorflow.org/tfx/serving/architecture

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/architecture.html

 v

제목 

이름

Model Serving: Architecture Concept

https://pytorch.org/serve/index.html
https://www.tensorflow.org/tfx/serving/architecture

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/architecture.html

 v

제목 

이름

https://docs.bentoml.com/en/latest/guides/batching.html#architecture

BentoML is also same with other model serving framework 

 In BentoML  
● API Server is Service (like fastapi app) 

● Backend Worker is called Runner  

● Bento is a combination of one API Server and 1~N Runner 

Bento is Unit of deployment in BentoML 

 

BentoML allow to writing code  

Unlike other frameworks where writing code is not the primary pattern  

but BentoML allow to write code easily 

https://docs.bentoml.com/en/latest/
guides/batching.html#architecture

Model Serving: Architecture Concept

 v

제목 

이름

BentoML: Quick Start [save model without BentoML)

1. No BentoML only pure pytorch training example

 v

제목 

이름

BentoML: Quick Start (save model with BentoML)

1. pytorch training example with BentoML

Just modify one line, if you want to bentoML

 v

제목 

이름

BentoML: Quick Start (upload model to S3 with BentoML)

❯ bentoml models export 모델명:버젼
s3://bucket-name/path~/model-name.bentomodel

 v

제목 

이름

BentoML: Quick Start (save & upload model with BentoML)

❯ bentoml models export {MODEL_NAME}:{MODEL_VERSION}
s3://BUCKET_NAME/PATH~/MODEL_NAME.bentomodel

 v

제목 

이름

BentoML: Quick Start (save & upload model with BentoML)

❯ bentoml models export {MODEL_NAME}:{MODEL_VERSION}
s3://BUCKET_NAME/PATH~/MODEL_NAME.bentomodel

If you use Yatai
You can manage model
version like a

● docker pull push
● git pull push

 v

제목 

이름

BentoML: Quick Start (inference without BentoML)

2. pytorch inference example without BentoML

 v

제목 

이름

BentoML: Quick Start (download model & inference with BentoML)

2. pytorch inference example with BentoML

 v

제목 

이름

BentoML: Quick Start [Model Serving] dev mode

Bentoml service.py sample
Bentoml serve service:svc (develop mode serving)
Default port : 3000

 v

제목 

이름

BentoML: Quick Start [Model Serving] dev mode

API Docs localhost:3000
builtin Healthy check API

 v

제목 

이름

BentoML: Quick Start [Model Serving] dev mode

localhost:3000/metricsLatency, Percentile별 latency
 Builtin Log, metrics

 v

제목 

이름

BentoML: Quick Start [Model Server Build]

Bentofile.yaml sample

$./sample_bento
Command Example
 bentoml build -f ./bentofile.yaml . --version=2023-08-13

Containerize Bento
BentoML manage dockerfile In framework

Command Example
 bentoml containerize sample-dummy-bento:latest

Bento package sample

 v

제목 

이름

BentoML: Quick Start [Summary]

There is almost features to Model Serving
1. Support model version managing (cloud storage 연동가능)

2. Support api-server SDK(like a fastapi)

3. Bentoml support containerize (manage dockerfile in BentoML Self)

 v

제목 

이름

BentoML: Architecture [Model Serving]

Why does not recommend fastapi & flask?

Model Serving’s performance key is Backend Model Worker(Runner) not API-Server
Web framework(flask, fastapi) does not manage Backend Model Worker separately

Support model versioning?
Support default builtIn metrics & logging?
Support containerizing? (auto build)
Support Managing Backend Worker?

 v

제목 

이름

BentoML: Architecture [Model Serving] production mode

What will happen in bento after deploy with production mode

bentoML builtin circus(process manager) & uvicorn

Custom set Uvicorn worker count

 bentoml serve –api-workers=3

 v

제목 

이름

BentoML: Bento Deploy Configuration Example

assuming a container is allocated 8 CPUs

 v

제목 

이름

BentoML: Bento Deploy Configuration Example

Container is allocated 8 cpu core

GPU allocation is also same to cpu

 v

제목 

이름

BentoML: Bento(Model-Serve) Configuration (batchable)

Batchable Option is not Silver Bullet

In general, enabling the batchable option increases
throughput but slows down latency.

This makes sense.
The dispatcher intercepts the packets that are delivered to the
runner and waits until several packets are gathered (max
batch size).
packets (max_batch_size) before forwarding them to the
Runner.

Another way of saying this is that a request that could have
been answered in 30ms might take 40ms because the
Diapatcher waits an extra 10ms (max_latency_ms).

Of course, depending on where the bottleneck is, batchable
options can have a positive impact on latency.

These batch options are also available on torchserve
tensorflowserving triton-inference-server

 v

제목 

이름

BentoML: Bento(Model-Serve) Configuration (batchable)

Batchable Option is not Silver Bullet

In general, enabling the batchable option increases
throughput but slows down latency.

This makes sense.
The dispatcher intercepts the packets that are delivered to the
runner and waits until several packets are gathered (max
batch size).
packets (max_batch_size) before forwarding them to the
Runner.

Another way of saying this is that a request that could have
been answered in 30ms might take 40ms because the
Diapatcher waits an extra 10ms (max_latency_ms).

Of course, depending on where the bottleneck is, batchable
options can have a positive impact on latency.

These batch options are also available on torchserve
tensorflowserving triton-inference-server

 v

제목 

이름

bentoctl Deploy bentoML to Cloud (AWS, GCP, Azure)

BentoML is manage dockerfile
And containerize

bentoctl manage terraform (.tf) file
deploy bento to Vendor(aws, gcp) of Cloud Resource

 v

제목 

이름

bentoctl: Deploy bentoML to Cloud (AWS, GCP, Azure)

https://github.com/bentoml/bentoctl

 v

제목 

이름

3. bentoctl init

bentoctl Quick Start

terraform file is created & managed by bentoctl

1. Install bentoctl

2. install Cloud Resource operator

 v

제목 

이름

bentoctl Quick Start

Auto push bentoml aws lambda image to ECR

Rebuild bento to AWS-Lambda Image Base

 $ bentoctl build iris_classifier:2023-08-13 -f deployment_config.yaml

deploy bento with aws-lambda

 $ bentoctl apply -f deployment_config.yaml

AWS Apigatewayv2, lambda cloudwatch was created

 v

제목 

이름

BentoML: OpenLLM
(Large Language Model)

LLM (Large Language Models)

https://github.com/bentoml/OpenLLM

https://github.com/bentoml/OpenLLM

https://github.com/bentoml/OpenLLM

 v

제목 

이름

BentoML UseCase In Naver Overview

 
● Offline Serving (throughput is important) 
● Online Serving (Latency is important) 

 

 
 

 v

제목 

이름

Batch size : 10, pydantic

BentoML UseCase In Naver : troubleshooting 1 (pydantic)

Do not use pydantic (even if pydantic>=2.x) if you need high-end performance (recommend to use TypedDict) 

When Row Size is 10, class to dict serializing is only 3.7% time

 v

제목 

이름

Batch size : 1000 , Pydantic
Pydantic 을 사용한 예제 프로파일링
결과

BentoML UseCase In Naver : troubleshooting 1 (pydantic)

Do not use pydantic (even if pydantic>=2.x) if you need high-end performance (recommend to use TypedDict) 

but row Size is 1000 it has 48.7% (almost half time in total Latency)

 v

제목 

이름

Batch size : 1000, TypedDict

Profiling Result (use Pydantic)

Profiling result (use TypedDict)

BentoML UseCase In Naver : troubleshooting 1 (pydantic)

Do not use pydantic (even if pydantic>=2.x) if you need high performance (recommend to use TypedDict) 

Use TypedDict instead of pydantic

Time 48.7 %-> 0 %

 v

제목 

이름

dataframe is very heavy instance

Pandas VS numpy speed comparison profiling Result

BentoML UseCase In Naver : troubleshooting 2 (pandas DataFrame)

Pandas is fast cause of numpy & Cython
But pandas calculate only single core so limitation is clear

Do not use pandas in online serving if you need high-end performance (recommend to use numpy array) 

Modin engine use multi core & support pandas Dataframe Interface

In online serving, pandas is not good solution
Modin is better but numpy is much better

Bentoml does not Modin IO Descriptor now

low level data structure is better like a typeddict or numpy

pandas : create instance double time slow , slicing is more 30 times sloy

 v

제목 

이름

BentoML UseCase In Naver : Online Serving (distributed Runner)

normal Bento Service Create two same Runner & inference distribute rows

you're talking about BentoML with Naver,

Why are you only talking about preprocessing, which seems completely unrelated?

Because Data Distributed Runner is needed these things

 v

제목 

이름

BentoML UseCase In Naver : Online Serving (distributed Runner)

As a Result

The larger the batch size, the more effective the distributed runner approach can be.

 > The efficiency of the batch size is affected by the number of CPUs allocated to the Runner + the number of threads adjusted in MLFramework.

For the Iris_feature model, we can see that the Latency AVG and Median values are worse with a batch_size of 500, albeit slightly.
However, when the batch_size is larger (batch_size=1000), we see an improvement in latency.

Low is Better

dis-runner: distributed-runner

See the more detail Distributed Runner Limitations and More efficient Usage
 https://github.com/KimSoungRyoul/PyConKR2023-ModelServing-BentoML/issues/5

Low is Better Low is Better

https://github.com/KimSoungRyoul/PyConKR2023-ModelServing-BentoML/issues/5
https://github.com/KimSoungRyoul/PyConKR2023-ModelServing-BentoML/issues/5

 v

제목 

이름

Model Serving(Inference) Platform with k8s

 

● Yatai (with BentoML) 

● Kserve (standardized inference platform) 

 

 

 

 

 

 

 v

제목 

이름

Model serving platform

Model Serving Platform (k8s-based) (BentoCloud) Model Serving Platform (k8s-based)

ML workflow 의 일부인 Model Serving (Platform) 에 한정한다.

 v

제목 

이름

Serving Platform Concept

● Model Version Control Bento Model , S3, GCS, … 

● Model Server Version Control ECR, dockerhub (image) 

● Deployment, Replica Control K8S CRD (Custom Resource Definition) 

● Observe prometheus, grafana 

KServe Yatai 

 v

제목 

이름

Serving Platform Component CRD

Yatai CRD BentoDeployment  Kserve CRD isvc (inferenceservice) 

Platform support simple deployment system
Just set Yaml file & apply

 v

제목 

이름

Serving Platform Yatai

BentoML(프레임워크)은 모델의 버전관리, 모델서버 관리가 이미 가능하다.

이로 인해 yatai 에서는 그저 bento 의 이름과 버전만 명시하면 손쉽게 배포가 가능하다.
또한 Yatai 라는 Platform 수준에서 model 과 model-server(=bento) 버전관리를 할수있다. (= Model, Model Server Registry
제공)

 v

제목 

이름

Serving Platform Component CRD

Kserve does not support Model Registry. Also, the frameworks used by kserve are different for each model.
For this reason, kserve provides an additional CustomResource called servingruntime.
Servingruntime is responsible for mapping the models that need to be deployed to the Model Serving Frameworks that can be deployed.
If there is no servingruntime inside the deployed kserve that supports the model specified in the isvc deployment, it will not be deployed.
As mentioned earlier, you need to understand each MLFramework and Serving Framework.
You need an MLOps team to manage Kserve (even if you use GCP kubeflow...)

https://kserve.github.io/website/0.10/modelserving/servingruntimes/

 v

제목 

이름

Serving Platform Yatai BentoDeployment

https://docs.yatai.io/en/latest/concepts/bentodeployment_crd.html

BentoML spawn more process In Container

BentoML spawn api-server process & runner process

Yatai deploy more Pod In k8s

 v

제목 

이름

Serving Platform Yatai BentoDeployment

https://docs.yatai.io/en/latest/concepts/bentodeployment_crd.html

Use cases 1 (Offline serving)
이 경우 Client connection의 갯수는 한정적
APIServer Pod수를 줄이고(scale in)
Runner Pod의 수를 늘려서(scale out) 배포,운용하는 것이 효율적

Use cases 2 (Increase throughput)
API Server Pod의 수를 늘리고 (scale out)
Runner Pod 의 container당 더 많은 자원할당 (scale up) + batchable Option 활성화
(이 경우 필연적으로 Latency Trade off)

Use cases 3 (Improve Latency)
API Server Pod의 수 유지
Runner Pod 의 container당 더 많은 자원할당 (scale up) + batchable Option 비활성화
(WAS 성능이 좋아봤자 Database가 느리면 결국 느린것과 같은 논리
Runner(inference연산속도)가 빨라야지 Latency가 개선될수있다)

위 예시들은 BentoCRD yaml 파일의 숫자 값 수정만으로 처리가 가능하다

Use cases 4 (Improve Latency)
코드 수정을 통해 동일 모델 Runner를 2개이상 생성해서
Runner에게 요청받은 데이터를 분산해서 연산하도록 한다. (아래 주제 참고)

BentoML에서 distributed runner 형태로 코드를 작성했다면 이 경우에는 Latency는 개선됨
하지만 처리량 증진을 위해 bentoDeployment.yaml 작성시 Runner pod 의 갯수를 늘리거나 cpu 할당량을
늘릴것을 권장

 v

제목 

이름

Serving Platform quick Start

https://kserve.github.io/website/0.10/get_started/#install-the-kserve-quickstart-environment

https://docs.yatai.io/en/latest/installation/yatai.html

 You can see a demo of both Kserve and Yatai on minikube.
Enter each official site and execute the QuickStart Script

 v

제목 

이름

마치며

Model Serving Frameworks are mostly similar in architecture. The only difference is how they are used and for what purpose. 

 

BentoML is a unified framework, so it is compatible with most MLFrameworks. This is one of the biggest advantages of BentoML  

 

It's more efficient to simplify model serving with BentoML and use that time to improve the performance of the model itself, rather than jumping from BentoML to another model

framework to improve performance.  

(this is why our team use BentoML) 

 

If you need high performance, triton-inference-server is a very good choice 

For this reason, bentoml only supports triton-inference-server as a runner. 

 

Model Serving Platforms are similar in usage: Kserve, yatai (because they are based on k8s).  

 

The case of SageMaker Deploy is a little different because it is a cloud-based resource unit. In this case, you can use bentoml inside sagemaker with bentoctl.  

 

BentoML and yatai are the best combination, but that doesn't mean that yatai is mandatory (=yatai, kserve), which can be chosen again when the organization moves up to

platform). 

If you have a clear understanding of the Serving Platform concept in the first place, you are free to switch. 

 

BentoML and Yatai are both good frameworks, except the naming sense (in this case only In Korea (IMO)) 

 

pdf download link
https://github.com/KimSoungRyoul/PyConKR2023-ModelServing-BentoML 

 v

제목 

이름

 v

끝 

https://github.com/KimSoungRyoul/PyConKR2023-ModelServing

