-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdetect_texts.py
41 lines (33 loc) · 1.41 KB
/
detect_texts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import cv2
import math
import pandas as pd
def get_horizontal_list(img, text_score_map, link_score_map, thr=300):
_, text_mask = cv2.threshold(src=text_score_map, thresh=120, maxval=255, type=cv2.THRESH_BINARY)
_, link_mask = cv2.threshold(src=link_score_map, thresh=160, maxval=255, type=cv2.THRESH_BINARY)
word_mask = text_mask + link_mask
_, _, stats, _ = cv2.connectedComponentsWithStats(image=word_mask, connectivity=4)
bboxes = pd.DataFrame(stats[1:, :], columns=["xmin", "ymin", "width", "height", "pixel_count"])
bboxes = bboxes[bboxes["pixel_count"].ge(thr)]
bboxes["xmax"] = bboxes["xmin"] + bboxes["width"]
bboxes["ymax"] = bboxes["ymin"] + bboxes["height"]
bboxes["margin"] = bboxes.apply(
lambda x: int(
math.sqrt(
x["pixel_count"] * min(x["width"], x["height"]) / (x["width"] * x["height"])
) * 2.2
), axis=1
)
bboxes["xmin"] = bboxes.apply(
lambda x: max(0, x["xmin"] - x["margin"]), axis=1
)
bboxes["ymin"] = bboxes.apply(
lambda x: max(0, x["ymin"] - x["margin"]), axis=1
)
bboxes["xmax"] = bboxes.apply(
lambda x: min(img.shape[1], x["xmax"] + x["margin"]), axis=1
)
bboxes["ymax"] = bboxes.apply(
lambda x: min(img.shape[0], x["ymax"] + x["margin"]), axis=1
)
bboxes = bboxes[["xmin", "xmax", "ymin", "ymax"]]
return bboxes.values.tolist()