-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacades.py
78 lines (64 loc) · 2.86 KB
/
facades.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# References:
# https://github.com/Seonghoon-Yu/AI_Paper_Review/blob/master/GAN/pix2pix(2016).ipynb
# https://discuss.pytorch.org/t/how-to-apply-same-transform-on-a-pair-of-picture/14914
# "Data were split into train and test randomly."
from torch.utils.data import Dataset
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from PIL import Image
from pathlib import Path
import random
class FacadesDataset(Dataset):
def __init__(
self,
data_dir,
input_img_mean,
input_img_std,
output_img_mean,
output_img_std,
split="train",
):
super().__init__()
self.data_dir = data_dir
self.input_img_mean = input_img_mean
self.input_img_std = input_img_std
self.output_img_mean = output_img_mean
self.output_img_std = output_img_std
self.split = split
self.input_img_paths = sorted(list(Path(data_dir).glob(f"""{split}B/*.jpg""")))
def transform(self, input_image, output_image):
if self.split == "train":
# "Random jitter was applied by resizing the 256 × 256 input images to 286 × 286
# and then randomly cropping back to size 256 × 256."
input_image = TF.resize(input_image, size=286)
output_image = TF.resize(output_image, size=286)
t, l, h, w = T.RandomCrop.get_params(input_image, output_size=(256, 256))
input_image = TF.crop(input_image, top=t, left=l, height=h, width=w)
output_image = TF.crop(output_image, top=t, left=l, height=h, width=w)
# "Mirroring"
p = random.random()
if p > 0.5:
input_image = TF.hflip(input_image)
output_image = TF.hflip(output_image)
else:
input_image = TF.center_crop(input_image, output_size=(256, 256))
output_image = TF.center_crop(output_image, output_size=(256, 256))
input_image = T.ToTensor()(input_image)
input_image = T.Normalize(
mean=self.input_img_mean, std=self.input_img_std,
)(input_image)
output_image = T.ToTensor()(output_image)
output_image = T.Normalize(
mean=self.output_img_mean, std=self.output_img_std,
)(output_image)
return input_image, output_image
def __len__(self):
return len(self.input_img_paths)
def __getitem__(self, idx):
input_img_path = self.input_img_paths[idx]
output_img_path = str(input_img_path).replace(f"/{self.split}B/", f"/{self.split}A/")
output_img_path = output_img_path.replace("_B.jpg", "_A.jpg")
input_image = Image.open(input_img_path).convert("RGB")
output_image = Image.open(output_img_path).convert("RGB")
input_image, output_image = self.transform(input_image, output_image)
return input_image, output_image