-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathkepdiffim.py
executable file
·422 lines (341 loc) · 15.1 KB
/
kepdiffim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import numpy as np
from matplotlib import pyplot as plt
from astropy.io import fits as pyfits
import kepio, kepmsg, kepkey, kepplot, kepstat
import sys, time, re, math
# -----------------------------------------------------------
# core code
def kepdiffim(infile,outfile,plotfile,imscale,colmap,filter,function,cutoff,
clobber,verbose,logfile,status,cmdLine=False):
# input arguments
status = 0
np.seterr(all="ignore")
# log the call
hashline = '----------------------------------------------------------------------------'
kepmsg.log(logfile,hashline,verbose)
call = 'KEPDIFFIM -- '
call += 'infile='+infile+' '
call += 'outfile='+outfile+' '
call += 'plotfile='+plotfile+' '
call += 'imscale='+imscale+' '
call += 'colmap='+colmap+' '
filt = 'n'
if (filter): filt = 'y'
call += 'filter='+filt+ ' '
call += 'function='+function+' '
call += 'cutoff='+str(cutoff)+' '
overwrite = 'n'
if (clobber): overwrite = 'y'
call += 'clobber='+overwrite+ ' '
chatter = 'n'
if (verbose): chatter = 'y'
call += 'verbose='+chatter+' '
call += 'logfile='+logfile
kepmsg.log(logfile,call+'\n',verbose)
# start time
kepmsg.clock('KEPDIFFIM started at: ',logfile,verbose)
# test log file
logfile = kepmsg.test(logfile)
# clobber output file
if clobber: status = kepio.clobber(outfile,logfile,verbose)
if kepio.fileexists(outfile):
message = 'ERROR -- KEPDIFFIM: ' + outfile + ' exists. Use --clobber'
status = kepmsg.err(logfile,message,verbose)
# reference color map
if colmap == 'browse':
status = cmap_plot()
# open TPF FITS file
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
kepio.readTPF(infile,'TIME',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
kepio.readTPF(infile,'TIMECORR',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
kepio.readTPF(infile,'CADENCENO',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
kepio.readTPF(infile,'FLUX',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
if status == 0:
kepid, channel, skygroup, module, output, quarter, season, \
ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
kepio.readTPF(infile,'QUALITY',logfile,verbose)
# read mask defintion data from TPF file
if status == 0:
maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose)
# print target data
if status == 0:
print ''
print ' KepID: %s' % kepid
print ' RA (J2000): %s' % ra
print 'Dec (J2000): %s' % dec
print ' KepMag: %s' % kepmag
print ' SkyGroup: %2s' % skygroup
print ' Season: %2s' % str(season)
print ' Channel: %2s' % channel
print ' Module: %2s' % module
print ' Output: %1s' % output
print ''
# how many quality = 0 rows?
if status == 0:
npts = 0
nrows = len(fluxpixels)
for i in range(nrows):
if qual[i] == 0 and np.isfinite(barytime[i]) \
and np.isfinite(fluxpixels[i,int(ydim*xdim/2)]):
npts += 1
time = np.empty((npts))
timecorr = np.empty((npts))
cadenceno = np.empty((npts))
quality = np.empty((npts))
pixseries = np.empty((ydim*xdim,npts))
errseries = np.empty((ydim*xdim,npts))
# construct output light curves
if status == 0:
nptsx = 0
for i in range(ydim*xdim):
npts = 0
for k in range(nrows):
if (qual[k] == 0 and
np.isfinite(barytime[k]) and
np.isfinite(fluxpixels[k,int(ydim*xdim/2)])):
time[npts] = barytime[k]
timecorr[npts] = tcorr[k]
cadenceno[npts] = cadno[k]
quality[npts] = qual[k]
pixseries[i,npts] = fluxpixels[k,nptsx]
errseries[i,npts] = errpixels[k,nptsx]
npts += 1
nptsx += 1
# define data sampling
if status == 0 and filter:
tpf, status = kepio.openfits(infile,'readonly',logfile,verbose)
if status == 0 and filter:
cadence, status = kepkey.cadence(tpf[1],infile,logfile,verbose)
tr = 1.0 / (cadence / 86400)
timescale = 1.0 / (cutoff / tr)
# define convolution function
if status == 0 and filter:
if function == 'boxcar':
filtfunc = np.ones(int(np.ceil(timescale)))
elif function == 'gauss':
timescale /= 2
dx = np.ceil(timescale * 10 + 1)
filtfunc = kepfunc.gauss()
filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
elif function == 'sinc':
dx = np.ceil(timescale * 12 + 1)
fx = linspace(0,dx-1,dx)
fx = fx - dx / 2 + 0.5
fx /= timescale
filtfunc = np.sinc(fx)
filtfunc /= np.sum(filtfunc)
# pad time series at both ends with noise model
if status == 0 and filter:
for i in range(ydim*xdim):
ave, sigma = kepstat.stdev(pixseries[i,:len(filtfunc)])
padded = np.append(kepstat.randarray(np.ones(len(filtfunc)) * ave, \
np.ones(len(filtfunc)) * sigma), pixseries[i,:])
ave, sigma = kepstat.stdev(pixseries[i,-len(filtfunc):])
padded = np.append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave, \
np.ones(len(filtfunc)) * sigma))
# convolve data
if status == 0:
convolved = np.convolve(padded,filtfunc,'same')
# remove padding from the output array
if status == 0:
outdata = convolved[len(filtfunc):-len(filtfunc)]
# subtract low frequencies
if status == 0:
outmedian = np.median(outdata)
pixseries[i,:] = pixseries[i,:] - outdata + outmedian
# sum pixels over cadence
if status == 0:
nptsx = 0
nrows = len(fluxpixels)
pixsum = np.zeros((ydim*xdim))
errsum = np.zeros((ydim*xdim))
for i in range(npts):
if quality[i] == 0:
pixsum += pixseries[:,i]
errsum += errseries[:,i]**2
nptsx += 1
pixsum /= nptsx
errsum = np.sqrt(errsum) / nptsx
# calculate standard deviation pixels
if status == 0:
pixvar = np.zeros((ydim*xdim))
for i in range(npts):
if quality[i] == 0:
pixvar += (pixsum - pixseries[:,i] / errseries[:,i])**2
pixvar = np.sqrt(pixvar)
# median pixel errors
if status == 0:
errmed = np.empty((ydim*xdim))
for i in range(ydim*xdim):
errmed[i] = np.median(errseries[:,i])
# calculate chi distribution pixels
if status == 0:
pixdev = np.zeros((ydim*xdim))
for i in range(npts):
if quality[i] == 0:
pixdev += ((pixsum - pixseries[:,i]) / pixsum)**2
pixdev = np.sqrt(pixdev)
# image scale and intensity limits
if status == 0:
pixsum_pl, zminsum, zmaxsum = kepplot.intScale1D(pixsum,imscale)
pixvar_pl, zminvar, zmaxvar = kepplot.intScale1D(pixvar,imscale)
pixdev_pl, zmindev, zmaxdev = kepplot.intScale1D(pixdev,imscale)
# construct output summed image
if status == 0:
imgsum = np.empty((ydim,xdim))
imgvar = np.empty((ydim,xdim))
imgdev = np.empty((ydim,xdim))
imgsum_pl = np.empty((ydim,xdim))
imgvar_pl = np.empty((ydim,xdim))
imgdev_pl = np.empty((ydim,xdim))
n = 0
for i in range(ydim):
for j in range(xdim):
imgsum[i,j] = pixsum[n]
imgvar[i,j] = pixvar[n]
imgdev[i,j] = pixdev[n]
imgsum_pl[i,j] = pixsum_pl[n]
imgvar_pl[i,j] = pixvar_pl[n]
imgdev_pl[i,j] = pixdev_pl[n]
n += 1
# construct output file
if status == 0:
instruct, status = kepio.openfits(infile,'readonly',logfile,verbose)
status = kepkey.history(call,instruct[0],outfile,logfile,verbose)
hdulist = pyfits.HDUList(instruct[0])
hdulist.writeto(outfile)
status = kepkey.new('EXTNAME','FLUX','name of extension',instruct[2],outfile,logfile,verbose)
pyfits.append(outfile,imgsum,instruct[2].header)
status = kepkey.new('EXTNAME','CHI','name of extension',instruct[2],outfile,logfile,verbose)
pyfits.append(outfile,imgvar,instruct[2].header)
status = kepkey.new('EXTNAME','STDDEV','name of extension',instruct[2],outfile,logfile,verbose)
pyfits.append(outfile,imgdev,instruct[2].header)
status = kepkey.new('EXTNAME','APERTURE','name of extension',instruct[2],outfile,logfile,verbose)
pyfits.append(outfile,instruct[2].data,instruct[2].header)
status = kepio.closefits(instruct,logfile,verbose)
# pixel limits of the subimage
if status == 0:
ymin = row
ymax = ymin + ydim
xmin = column
xmax = xmin + xdim
# plot limits for summed image
ymin = float(ymin) - 0.5
ymax = float(ymax) - 0.5
xmin = float(xmin) - 0.5
xmax = float(xmax) - 0.5
# plot style
if status == 0:
plotimage(imgsum_pl,imgvar_pl,imgdev_pl,zminsum,zminvar,zmindev,
zmaxsum,zmaxvar,zmaxdev,xmin,xmax,ymin,ymax,colmap,plotfile,cmdLine)
# stop time
kepmsg.clock('KEPDIFFIM ended at: ',logfile,verbose)
return
# -----------------------------------------------------------
# plot channel image
def plotimage(imgsum_pl,imgvar_pl,imgdev_pl,zminsum,zminvar,zmindev,
zmaxsum,zmaxvar,zmaxdev,xmin,xmax,ymin,ymax,colmap,plotfile,cmdLine):
plt.figure(figsize=[15,6])
#ion()
plt.clf()
# plot the image window
ax = plt.axes([0.04,0.11,0.31,0.78])
plt.imshow(imgsum_pl,aspect='auto',interpolation='nearest',origin='lower',
vmin=zminsum,vmax=zmaxsum,extent=(xmin,xmax,ymin,ymax),cmap=colmap)
plt.gca().set_autoscale_on(False)
labels = ax.get_yticklabels()
plt.setp(labels, 'rotation', 90)
plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.xlabel('Pixel Column Number', {'color' : 'k'})
plt.ylabel('Pixel Row Number', {'color' : 'k'})
plt.title('Flux', {'color' : 'k', 'fontsize' : '24'})
# plot the variance window
plt.axes([0.36,0.11,0.31,0.78])
plt.imshow(imgvar_pl,aspect='auto',interpolation='nearest',origin='lower',
vmin=zminvar,vmax=zmaxvar,extent=(xmin,xmax,ymin,ymax),cmap=colmap)
plt.gca().set_autoscale_on(False)
plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.setp(plt.gca(),yticklabels=[])
plt.xlabel('Pixel Column Number', {'color' : 'k'})
try:
plt.title(r'$\chi$ Distribution', {'color' : 'k', 'fontsize' : '28'})
except:
plt.title('Chi Distribution', {'color' : 'k', 'fontsize' : '24'})
# plot the normalized standard deviation window
plt.axes([0.68,0.11,0.31,0.78])
plt.imshow(imgdev_pl,aspect='auto',interpolation='nearest',origin='lower',
vmin=zmindev,vmax=zmaxdev,extent=(xmin,xmax,ymin,ymax),cmap=colmap)
plt.gca().set_autoscale_on(False)
plt.gca().xaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.gca().yaxis.set_major_formatter(plt.ScalarFormatter(useOffset=False))
plt.setp(plt.gca(),yticklabels=[])
plt.xlabel('Pixel Column Number', {'color' : 'k'})
plt.title('Normalized Standard Deviation', {'color' : 'k', 'fontsize' : '24'})
# render plot
plt.ion()
plt.show()
if plotfile.lower() != 'none':
plt.savefig(plotfile)
return
# -----------------------------------------------------------
# these are the choices for the image colormap
def cmap_plot():
plt.figure(1,figsize=[5,10])
#ion()
a=outer(ones(10),arange(0,1,0.01))
plt.subplots_adjust(top=0.99,bottom=0.00,left=0.01,right=0.8)
maps=[m for m in cm.datad if not m.endswith("_r")]
maps.sort()
l=len(maps)+1
for i, m in enumerate(maps):
print m
plt.subplot(l,1,i+1)
plt.setp(plt.gca(),xticklabels=[],xticks=[],yticklabels=[],yticks=[])
plt.imshow(a,aspect='auto',cmap=get_cmap(m),origin="lower")
plt.text(100.85,0.5,m,fontsize=10)
#ioff()
status = 1
return status
# -----------------------------------------------------------
# main
if '--shell' in sys.argv:
import argparse
parser = argparse.ArgumentParser(description='Difference imaging of pixels within a target mask')
parser.add_argument('--shell', action='store_true', help='Are we running from the shell?')
parser.add_argument('infile', help='Name of input file', type=str)
parser.add_argument('outfile', help='Name of FITS file to output', type=str)
parser.add_argument('--plotfile', default='None', help='name of output PNG plot file', type=str)
parser.add_argument('--imscale', default='logarithmic', help='type of image intensity scale', type=str, choices=['linear','logarithmic','squareroot'])
parser.add_argument('--cmap', default='PuBu', help='image colormap', type=str)
parser.add_argument('--filter', action='store_true', help='High-pass Filter data?')
parser.add_argument('--function', help='filter function', default='boxcar', type=str, choices=['boxcar','gauss','sinc'])
parser.add_argument('--cutoff', help='Characteristic frequency cutoff of filter [1/days]', type=int, default=1.0)
parser.add_argument('--clobber', action='store_true', help='Overwrite output file?')
parser.add_argument('--verbose', action='store_true', help='Write to a log file?')
parser.add_argument('--logfile', '-l', help='Name of ascii log file', default='kepdiffim.log', dest='logfile', type=str)
parser.add_argument('--status', '-e', help='Exit status (0=good)', default=0, dest='status', type=int)
args = parser.parse_args()
cmdLine=True
kepdiffim(args.infile, args.outfile, args.plotfile, args.imscale, args.cmap, args.filter, args.function, args.cutoff,
args.clobber, args.verbose, args.logfile, args.status, cmdLine)
else:
from pyraf import iraf
parfile = iraf.osfn("kepler$kepdiffim.par")
t = iraf.IrafTaskFactory(taskname="kepdiffim", value=parfile, function=kepdiffim)