-
Notifications
You must be signed in to change notification settings - Fork 65
/
csr.c
3378 lines (2825 loc) · 104 KB
/
csr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*!
* \file
*
* \brief Various routines with dealing with CSR matrices
*
* \author George Karypis
* \version\verbatim $Id: csr.c 21044 2017-05-24 22:50:32Z karypis $ \endverbatim
*/
#include <GKlib.h>
#define OMPMINOPS 50000
/*************************************************************************/
/*! Allocate memory for a CSR matrix and initializes it
\returns the allocated matrix. The various fields are set to NULL.
*/
/**************************************************************************/
gk_csr_t *gk_csr_Create()
{
gk_csr_t *mat=NULL;
if ((mat = (gk_csr_t *)gk_malloc(sizeof(gk_csr_t), "gk_csr_Create: mat")))
gk_csr_Init(mat);
return mat;
}
/*************************************************************************/
/*! Initializes the matrix
\param mat is the matrix to be initialized.
*/
/*************************************************************************/
void gk_csr_Init(gk_csr_t *mat)
{
memset(mat, 0, sizeof(gk_csr_t));
mat->nrows = mat->ncols = 0;
}
/*************************************************************************/
/*! Frees all the memory allocated for matrix.
\param mat is the matrix to be freed.
*/
/*************************************************************************/
void gk_csr_Free(gk_csr_t **mat)
{
if (*mat == NULL)
return;
gk_csr_FreeContents(*mat);
gk_free((void **)mat, LTERM);
}
/*************************************************************************/
/*! Frees only the memory allocated for the matrix's different fields and
sets them to NULL.
\param mat is the matrix whose contents will be freed.
*/
/*************************************************************************/
void gk_csr_FreeContents(gk_csr_t *mat)
{
gk_free((void *)&mat->rowptr, &mat->rowind, &mat->rowval,
&mat->rowids, &mat->rlabels, &mat->rmap,
&mat->colptr, &mat->colind, &mat->colval,
&mat->colids, &mat->clabels, &mat->cmap,
&mat->rnorms, &mat->cnorms, &mat->rsums, &mat->csums,
&mat->rsizes, &mat->csizes, &mat->rvols, &mat->cvols,
&mat->rwgts, &mat->cwgts,
LTERM);
}
/*************************************************************************/
/*! Returns a copy of a matrix.
\param mat is the matrix to be duplicated.
\returns the newly created copy of the matrix.
*/
/**************************************************************************/
gk_csr_t *gk_csr_Dup(gk_csr_t *mat)
{
gk_csr_t *nmat;
nmat = gk_csr_Create();
nmat->nrows = mat->nrows;
nmat->ncols = mat->ncols;
/* copy the row structure */
if (mat->rowptr)
nmat->rowptr = gk_zcopy(mat->nrows+1, mat->rowptr,
gk_zmalloc(mat->nrows+1, "gk_csr_Dup: rowptr"));
if (mat->rowids)
nmat->rowids = gk_icopy(mat->nrows, mat->rowids,
gk_imalloc(mat->nrows, "gk_csr_Dup: rowids"));
if (mat->rlabels)
nmat->rlabels = gk_icopy(mat->nrows, mat->rlabels,
gk_imalloc(mat->nrows, "gk_csr_Dup: rlabels"));
if (mat->rnorms)
nmat->rnorms = gk_fcopy(mat->nrows, mat->rnorms,
gk_fmalloc(mat->nrows, "gk_csr_Dup: rnorms"));
if (mat->rsums)
nmat->rsums = gk_fcopy(mat->nrows, mat->rsums,
gk_fmalloc(mat->nrows, "gk_csr_Dup: rsums"));
if (mat->rsizes)
nmat->rsizes = gk_fcopy(mat->nrows, mat->rsizes,
gk_fmalloc(mat->nrows, "gk_csr_Dup: rsizes"));
if (mat->rvols)
nmat->rvols = gk_fcopy(mat->nrows, mat->rvols,
gk_fmalloc(mat->nrows, "gk_csr_Dup: rvols"));
if (mat->rwgts)
nmat->rwgts = gk_fcopy(mat->nrows, mat->rwgts,
gk_fmalloc(mat->nrows, "gk_csr_Dup: rwgts"));
if (mat->rowind)
nmat->rowind = gk_icopy(mat->rowptr[mat->nrows], mat->rowind,
gk_imalloc(mat->rowptr[mat->nrows], "gk_csr_Dup: rowind"));
if (mat->rowval)
nmat->rowval = gk_fcopy(mat->rowptr[mat->nrows], mat->rowval,
gk_fmalloc(mat->rowptr[mat->nrows], "gk_csr_Dup: rowval"));
/* copy the col structure */
if (mat->colptr)
nmat->colptr = gk_zcopy(mat->ncols+1, mat->colptr,
gk_zmalloc(mat->ncols+1, "gk_csr_Dup: colptr"));
if (mat->colids)
nmat->colids = gk_icopy(mat->ncols, mat->colids,
gk_imalloc(mat->ncols, "gk_csr_Dup: colids"));
if (mat->clabels)
nmat->clabels = gk_icopy(mat->ncols, mat->clabels,
gk_imalloc(mat->ncols, "gk_csr_Dup: clabels"));
if (mat->cnorms)
nmat->cnorms = gk_fcopy(mat->ncols, mat->cnorms,
gk_fmalloc(mat->ncols, "gk_csr_Dup: cnorms"));
if (mat->csums)
nmat->csums = gk_fcopy(mat->ncols, mat->csums,
gk_fmalloc(mat->ncols, "gk_csr_Dup: csums"));
if (mat->csizes)
nmat->csizes = gk_fcopy(mat->ncols, mat->csizes,
gk_fmalloc(mat->ncols, "gk_csr_Dup: csizes"));
if (mat->cvols)
nmat->cvols = gk_fcopy(mat->ncols, mat->cvols,
gk_fmalloc(mat->ncols, "gk_csr_Dup: cvols"));
if (mat->cwgts)
nmat->cwgts = gk_fcopy(mat->ncols, mat->cwgts,
gk_fmalloc(mat->ncols, "gk_csr_Dup: cwgts"));
if (mat->colind)
nmat->colind = gk_icopy(mat->colptr[mat->ncols], mat->colind,
gk_imalloc(mat->colptr[mat->ncols], "gk_csr_Dup: colind"));
if (mat->colval)
nmat->colval = gk_fcopy(mat->colptr[mat->ncols], mat->colval,
gk_fmalloc(mat->colptr[mat->ncols], "gk_csr_Dup: colval"));
return nmat;
}
/*************************************************************************/
/*! Returns a submatrix containint a set of consecutive rows.
\param mat is the original matrix.
\param rstart is the starting row.
\param nrows is the number of rows from rstart to extract.
\returns the row structure of the newly created submatrix.
*/
/**************************************************************************/
gk_csr_t *gk_csr_ExtractSubmatrix(gk_csr_t *mat, int rstart, int nrows)
{
ssize_t i;
gk_csr_t *nmat;
if (rstart+nrows > mat->nrows)
return NULL;
nmat = gk_csr_Create();
nmat->nrows = nrows;
nmat->ncols = mat->ncols;
/* copy the row structure */
if (mat->rowptr)
nmat->rowptr = gk_zcopy(nrows+1, mat->rowptr+rstart,
gk_zmalloc(nrows+1, "gk_csr_ExtractSubmatrix: rowptr"));
for (i=nrows; i>=0; i--)
nmat->rowptr[i] -= nmat->rowptr[0];
ASSERT(nmat->rowptr[0] == 0);
if (mat->rowids)
nmat->rowids = gk_icopy(nrows, mat->rowids+rstart,
gk_imalloc(nrows, "gk_csr_ExtractSubmatrix: rowids"));
if (mat->rnorms)
nmat->rnorms = gk_fcopy(nrows, mat->rnorms+rstart,
gk_fmalloc(nrows, "gk_csr_ExtractSubmatrix: rnorms"));
if (mat->rsums)
nmat->rsums = gk_fcopy(nrows, mat->rsums+rstart,
gk_fmalloc(nrows, "gk_csr_ExtractSubmatrix: rsums"));
ASSERT(nmat->rowptr[nrows] == mat->rowptr[rstart+nrows]-mat->rowptr[rstart]);
if (mat->rowind)
nmat->rowind = gk_icopy(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
mat->rowind+mat->rowptr[rstart],
gk_imalloc(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
"gk_csr_ExtractSubmatrix: rowind"));
if (mat->rowval)
nmat->rowval = gk_fcopy(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
mat->rowval+mat->rowptr[rstart],
gk_fmalloc(mat->rowptr[rstart+nrows]-mat->rowptr[rstart],
"gk_csr_ExtractSubmatrix: rowval"));
return nmat;
}
/*************************************************************************/
/*! Returns a submatrix containing a certain set of rows.
\param mat is the original matrix.
\param nrows is the number of rows to extract.
\param rind is the set of row numbers to extract.
\returns the row structure of the newly created submatrix.
*/
/**************************************************************************/
gk_csr_t *gk_csr_ExtractRows(gk_csr_t *mat, int nrows, int *rind)
{
ssize_t i, ii, j, nnz;
gk_csr_t *nmat;
nmat = gk_csr_Create();
nmat->nrows = nrows;
nmat->ncols = mat->ncols;
for (nnz=0, i=0; i<nrows; i++)
nnz += mat->rowptr[rind[i]+1]-mat->rowptr[rind[i]];
nmat->rowptr = gk_zmalloc(nmat->nrows+1, "gk_csr_ExtractPartition: rowptr");
nmat->rowind = gk_imalloc(nnz, "gk_csr_ExtractPartition: rowind");
nmat->rowval = gk_fmalloc(nnz, "gk_csr_ExtractPartition: rowval");
nmat->rowptr[0] = 0;
for (nnz=0, j=0, ii=0; ii<nrows; ii++) {
i = rind[ii];
gk_icopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowind+mat->rowptr[i], nmat->rowind+nnz);
gk_fcopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowval+mat->rowptr[i], nmat->rowval+nnz);
nnz += mat->rowptr[i+1]-mat->rowptr[i];
nmat->rowptr[++j] = nnz;
}
ASSERT(j == nmat->nrows);
return nmat;
}
/*************************************************************************/
/*! Returns a submatrix corresponding to a specified partitioning of rows.
\param mat is the original matrix.
\param part is the partitioning vector of the rows.
\param pid is the partition ID that will be extracted.
\returns the row structure of the newly created submatrix.
*/
/**************************************************************************/
gk_csr_t *gk_csr_ExtractPartition(gk_csr_t *mat, int *part, int pid)
{
ssize_t i, j, nnz;
gk_csr_t *nmat;
nmat = gk_csr_Create();
nmat->nrows = 0;
nmat->ncols = mat->ncols;
for (nnz=0, i=0; i<mat->nrows; i++) {
if (part[i] == pid) {
nmat->nrows++;
nnz += mat->rowptr[i+1]-mat->rowptr[i];
}
}
nmat->rowptr = gk_zmalloc(nmat->nrows+1, "gk_csr_ExtractPartition: rowptr");
nmat->rowind = gk_imalloc(nnz, "gk_csr_ExtractPartition: rowind");
nmat->rowval = gk_fmalloc(nnz, "gk_csr_ExtractPartition: rowval");
nmat->rowptr[0] = 0;
for (nnz=0, j=0, i=0; i<mat->nrows; i++) {
if (part[i] == pid) {
gk_icopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowind+mat->rowptr[i], nmat->rowind+nnz);
gk_fcopy(mat->rowptr[i+1]-mat->rowptr[i], mat->rowval+mat->rowptr[i], nmat->rowval+nnz);
nnz += mat->rowptr[i+1]-mat->rowptr[i];
nmat->rowptr[++j] = nnz;
}
}
ASSERT(j == nmat->nrows);
return nmat;
}
/*************************************************************************/
/*! Splits the matrix into multiple sub-matrices based on the provided
color array.
\param mat is the original matrix.
\param color is an array of size equal to the number of non-zeros
in the matrix (row-wise structure). The matrix is split into
as many parts as the number of colors. For meaningfull results,
the colors should be numbered consecutively starting from 0.
\returns an array of matrices for each supplied color number.
*/
/**************************************************************************/
gk_csr_t **gk_csr_Split(gk_csr_t *mat, int *color)
{
ssize_t i, j;
int nrows, ncolors;
ssize_t *rowptr;
int *rowind;
float *rowval;
gk_csr_t **smats;
nrows = mat->nrows;
rowptr = mat->rowptr;
rowind = mat->rowind;
rowval = mat->rowval;
ncolors = gk_imax(rowptr[nrows], color, 1)+1;
smats = (gk_csr_t **)gk_malloc(sizeof(gk_csr_t *)*ncolors, "gk_csr_Split: smats");
for (i=0; i<ncolors; i++) {
smats[i] = gk_csr_Create();
smats[i]->nrows = mat->nrows;
smats[i]->ncols = mat->ncols;
smats[i]->rowptr = gk_zsmalloc(nrows+1, 0, "gk_csr_Split: smats[i]->rowptr");
}
for (i=0; i<nrows; i++) {
for (j=rowptr[i]; j<rowptr[i+1]; j++)
smats[color[j]]->rowptr[i]++;
}
for (i=0; i<ncolors; i++)
MAKECSR(j, nrows, smats[i]->rowptr);
for (i=0; i<ncolors; i++) {
smats[i]->rowind = gk_imalloc(smats[i]->rowptr[nrows], "gk_csr_Split: smats[i]->rowind");
smats[i]->rowval = gk_fmalloc(smats[i]->rowptr[nrows], "gk_csr_Split: smats[i]->rowval");
}
for (i=0; i<nrows; i++) {
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
smats[color[j]]->rowind[smats[color[j]]->rowptr[i]] = rowind[j];
smats[color[j]]->rowval[smats[color[j]]->rowptr[i]] = rowval[j];
smats[color[j]]->rowptr[i]++;
}
}
for (i=0; i<ncolors; i++)
SHIFTCSR(j, nrows, smats[i]->rowptr);
return smats;
}
/**************************************************************************/
/*! Determines the format of the CSR matrix based on the extension.
\param filename is the name of the file.
\param the user-supplied format.
\returns the type. The extension of the file directly maps to the
name of the format.
*/
/**************************************************************************/
int gk_csr_DetermineFormat(char *filename, int format)
{
if (format != GK_CSR_FMT_AUTO)
return format;
format = GK_CSR_FMT_CSR;
char *extension = gk_getextname(filename);
if (!strcmp(extension, "csr"))
format = GK_CSR_FMT_CSR;
else if (!strcmp(extension, "ijv"))
format = GK_CSR_FMT_IJV;
else if (!strcmp(extension, "cluto"))
format = GK_CSR_FMT_CLUTO;
else if (!strcmp(extension, "metis"))
format = GK_CSR_FMT_METIS;
else if (!strcmp(extension, "binrow"))
format = GK_CSR_FMT_BINROW;
else if (!strcmp(extension, "bincol"))
format = GK_CSR_FMT_BINCOL;
else if (!strcmp(extension, "bijv"))
format = GK_CSR_FMT_BIJV;
gk_free((void **)&extension, LTERM);
return format;
}
/**************************************************************************/
/*! Reads a CSR matrix from the supplied file and stores it the matrix's
forward structure.
\param filename is the file that stores the data.
\param format is either GK_CSR_FMT_METIS, GK_CSR_FMT_CLUTO,
GK_CSR_FMT_CSR, GK_CSR_FMT_BINROW, GK_CSR_FMT_BINCOL
specifying the type of the input format.
The GK_CSR_FMT_CSR does not contain a header
line, whereas the GK_CSR_FMT_BINROW is a binary format written
by gk_csr_Write() using the same format specifier.
\param readvals is either 1 or 0, indicating if the CSR file contains
values or it does not. It only applies when GK_CSR_FMT_CSR is
used.
\param numbering is either 1 or 0, indicating if the numbering of the
indices start from 1 or 0, respectively. If they start from 1,
they are automatically decreamented during input so that they
will start from 0. It only applies when GK_CSR_FMT_CSR is
used.
\returns the matrix that was read.
*/
/**************************************************************************/
gk_csr_t *gk_csr_Read(char *filename, int format, int readvals, int numbering)
{
ssize_t i, k, l;
size_t nfields, nrows, ncols, nnz, fmt, ncon;
size_t lnlen;
ssize_t *rowptr;
int *rowind, *iinds, *jinds, ival;
float *rowval=NULL, *vals, fval;
int readsizes, readwgts;
char *line=NULL, *head, *tail, fmtstr[256];
FILE *fpin;
gk_csr_t *mat=NULL;
format = gk_csr_DetermineFormat(filename, format);
if (!gk_fexists(filename))
gk_errexit(SIGERR, "File %s does not exist!\n", filename);
switch (format) {
case GK_CSR_FMT_BINROW:
mat = gk_csr_Create();
fpin = gk_fopen(filename, "rb", "gk_csr_Read: fpin");
if (fread(&(mat->nrows), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the nrows from file %s!\n", filename);
if (fread(&(mat->ncols), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the ncols from file %s!\n", filename);
mat->rowptr = gk_zmalloc(mat->nrows+1, "gk_csr_Read: rowptr");
if (fread(mat->rowptr, sizeof(ssize_t), mat->nrows+1, fpin) != mat->nrows+1)
gk_errexit(SIGERR, "Failed to read the rowptr from file %s!\n", filename);
mat->rowind = gk_imalloc(mat->rowptr[mat->nrows], "gk_csr_Read: rowind");
if (fread(mat->rowind, sizeof(int32_t), mat->rowptr[mat->nrows], fpin) != mat->rowptr[mat->nrows])
gk_errexit(SIGERR, "Failed to read the rowind from file %s!\n", filename);
if (readvals == 1) {
mat->rowval = gk_fmalloc(mat->rowptr[mat->nrows], "gk_csr_Read: rowval");
if (fread(mat->rowval, sizeof(float), mat->rowptr[mat->nrows], fpin) != mat->rowptr[mat->nrows])
gk_errexit(SIGERR, "Failed to read the rowval from file %s!\n", filename);
}
gk_fclose(fpin);
return mat;
break;
case GK_CSR_FMT_BINCOL:
mat = gk_csr_Create();
fpin = gk_fopen(filename, "rb", "gk_csr_Read: fpin");
if (fread(&(mat->nrows), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the nrows from file %s!\n", filename);
if (fread(&(mat->ncols), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the ncols from file %s!\n", filename);
mat->colptr = gk_zmalloc(mat->ncols+1, "gk_csr_Read: colptr");
if (fread(mat->colptr, sizeof(ssize_t), mat->ncols+1, fpin) != mat->ncols+1)
gk_errexit(SIGERR, "Failed to read the colptr from file %s!\n", filename);
mat->colind = gk_imalloc(mat->colptr[mat->ncols], "gk_csr_Read: colind");
if (fread(mat->colind, sizeof(int32_t), mat->colptr[mat->ncols], fpin) != mat->colptr[mat->ncols])
gk_errexit(SIGERR, "Failed to read the colind from file %s!\n", filename);
if (readvals) {
mat->colval = gk_fmalloc(mat->colptr[mat->ncols], "gk_csr_Read: colval");
if (fread(mat->colval, sizeof(float), mat->colptr[mat->ncols], fpin) != mat->colptr[mat->ncols])
gk_errexit(SIGERR, "Failed to read the colval from file %s!\n", filename);
}
gk_fclose(fpin);
return mat;
break;
case GK_CSR_FMT_IJV:
gk_getfilestats(filename, &nrows, &nnz, NULL, NULL);
if (readvals == 1 && 3*nrows != nnz)
gk_errexit(SIGERR, "Error: The number of numbers (%zd %d) in the input file is not a multiple of 3.\n", nnz, readvals);
if (readvals == 0 && 2*nrows != nnz)
gk_errexit(SIGERR, "Error: The number of numbers (%zd %d) in the input file is not a multiple of 2.\n", nnz, readvals);
nnz = nrows;
numbering = (numbering ? - 1 : 0);
/* read the data into three arrays */
iinds = gk_i32malloc(nnz, "iinds");
jinds = gk_i32malloc(nnz, "jinds");
vals = (readvals ? gk_fmalloc(nnz, "vals") : NULL);
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
for (nrows=0, ncols=0, i=0; i<nnz; i++) {
if (readvals) {
if (fscanf(fpin, "%d %d %f", &iinds[i], &jinds[i], &vals[i]) != 3)
gk_errexit(SIGERR, "Error: Failed to read (i, j, val) for nnz: %zd.\n", i);
}
else {
if (fscanf(fpin, "%d %d", &iinds[i], &jinds[i]) != 2)
gk_errexit(SIGERR, "Error: Failed to read (i, j) value for nnz: %zd.\n", i);
}
iinds[i] += numbering;
jinds[i] += numbering;
if (nrows < iinds[i])
nrows = iinds[i];
if (ncols < jinds[i])
ncols = jinds[i];
}
nrows++;
ncols++;
gk_fclose(fpin);
/* convert (i, j, v) into a CSR matrix */
mat = gk_csr_Create();
mat->nrows = nrows;
mat->ncols = ncols;
rowptr = mat->rowptr = gk_zsmalloc(nrows+1, 0, "rowptr");
rowind = mat->rowind = gk_i32malloc(nnz, "rowind");
if (readvals)
rowval = mat->rowval = gk_fmalloc(nnz, "rowval");
for (i=0; i<nnz; i++)
rowptr[iinds[i]]++;
MAKECSR(i, nrows, rowptr);
for (i=0; i<nnz; i++) {
rowind[rowptr[iinds[i]]] = jinds[i];
if (readvals)
rowval[rowptr[iinds[i]]] = vals[i];
rowptr[iinds[i]]++;
}
SHIFTCSR(i, nrows, rowptr);
gk_free((void **)&iinds, &jinds, &vals, LTERM);
return mat;
break;
case GK_CSR_FMT_BIJV:
mat = gk_csr_Create();
fpin = gk_fopen(filename, "rb", "gk_csr_Read: fpin");
if (fread(&(mat->nrows), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the nrows from file %s!\n", filename);
if (fread(&(mat->ncols), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the ncols from file %s!\n", filename);
if (fread(&nnz, sizeof(size_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the nnz from file %s!\n", filename);
if (fread(&readvals, sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read the readvals from file %s!\n", filename);
/* read the data into three arrays */
iinds = gk_i32malloc(nnz, "iinds");
jinds = gk_i32malloc(nnz, "jinds");
vals = (readvals ? gk_fmalloc(nnz, "vals") : NULL);
for (i=0; i<nnz; i++) {
if (fread(&(iinds[i]), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read iinds[i] from file %s!\n", filename);
if (fread(&(jinds[i]), sizeof(int32_t), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read jinds[i] from file %s!\n", filename);
if (readvals) {
if (fread(&(vals[i]), sizeof(float), 1, fpin) != 1)
gk_errexit(SIGERR, "Failed to read vals[i] from file %s!\n", filename);
}
//printf("%d %d\n", iinds[i], jinds[i]);
}
gk_fclose(fpin);
/* convert (i, j, v) into a CSR matrix */
rowptr = mat->rowptr = gk_zsmalloc(mat->nrows+1, 0, "rowptr");
rowind = mat->rowind = gk_i32malloc(nnz, "rowind");
if (readvals)
rowval = mat->rowval = gk_fmalloc(nnz, "rowval");
for (i=0; i<nnz; i++)
rowptr[iinds[i]]++;
MAKECSR(i, mat->nrows, rowptr);
for (i=0; i<nnz; i++) {
rowind[rowptr[iinds[i]]] = jinds[i];
if (readvals)
rowval[rowptr[iinds[i]]] = vals[i];
rowptr[iinds[i]]++;
}
SHIFTCSR(i, mat->nrows, rowptr);
gk_free((void **)&iinds, &jinds, &vals, LTERM);
return mat;
break;
/* the following are handled by a common input code, that comes after the switch */
case GK_CSR_FMT_CLUTO:
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
do {
if (gk_getline(&line, &lnlen, fpin) <= 0)
gk_errexit(SIGERR, "Premature end of input file: file:%s\n", filename);
} while (line[0] == '%');
if (sscanf(line, "%zu %zu %zu", &nrows, &ncols, &nnz) != 3)
gk_errexit(SIGERR, "Header line must contain 3 integers.\n");
readsizes = 0;
readwgts = 0;
readvals = 1;
numbering = 1;
break;
case GK_CSR_FMT_METIS:
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
do {
if (gk_getline(&line, &lnlen, fpin) <= 0)
gk_errexit(SIGERR, "Premature end of input file: file:%s\n", filename);
} while (line[0] == '%');
fmt = ncon = 0;
nfields = sscanf(line, "%zu %zu %zu %zu", &nrows, &nnz, &fmt, &ncon);
if (nfields < 2)
gk_errexit(SIGERR, "Header line must contain at least 2 integers (#vtxs and #edges).\n");
ncols = nrows;
nnz *= 2;
if (fmt > 111)
gk_errexit(SIGERR, "Cannot read this type of file format [fmt=%zu]!\n", fmt);
sprintf(fmtstr, "%03zu", fmt%1000);
readsizes = (fmtstr[0] == '1');
readwgts = (fmtstr[1] == '1');
readvals = (fmtstr[2] == '1');
numbering = 1;
ncon = (ncon == 0 ? 1 : ncon);
break;
case GK_CSR_FMT_CSR:
readsizes = 0;
readwgts = 0;
gk_getfilestats(filename, &nrows, &nnz, NULL, NULL);
if (readvals == 1 && nnz%2 == 1)
gk_errexit(SIGERR, "Error: The number of numbers (%zd %d) in the input file is not even.\n", nnz, readvals);
if (readvals == 1)
nnz = nnz/2;
fpin = gk_fopen(filename, "r", "gk_csr_Read: fpin");
break;
default:
gk_errexit(SIGERR, "Unknown csr format.\n");
return NULL;
}
mat = gk_csr_Create();
mat->nrows = nrows;
rowptr = mat->rowptr = gk_zmalloc(nrows+1, "gk_csr_Read: rowptr");
rowind = mat->rowind = gk_imalloc(nnz, "gk_csr_Read: rowind");
if (readvals != 2)
rowval = mat->rowval = gk_fsmalloc(nnz, 1.0, "gk_csr_Read: rowval");
if (readsizes)
mat->rsizes = gk_fsmalloc(nrows, 0.0, "gk_csr_Read: rsizes");
if (readwgts)
mat->rwgts = gk_fsmalloc(nrows*ncon, 0.0, "gk_csr_Read: rwgts");
/*----------------------------------------------------------------------
* Read the sparse matrix file
*---------------------------------------------------------------------*/
numbering = (numbering ? -1 : 0);
for (ncols=0, rowptr[0]=0, k=0, i=0; i<nrows; i++) {
do {
if (gk_getline(&line, &lnlen, fpin) == -1)
gk_errexit(SIGERR, "Premature end of input file: file while reading row %d\n", i);
} while (line[0] == '%');
head = line;
tail = NULL;
/* Read vertex sizes */
if (readsizes) {
#ifdef __MSC__
mat->rsizes[i] = (float)strtod(head, &tail);
#else
mat->rsizes[i] = strtof(head, &tail);
#endif
if (tail == head)
gk_errexit(SIGERR, "The line for vertex %zd does not have size information\n", i+1);
if (mat->rsizes[i] < 0)
errexit("The size for vertex %zd must be >= 0\n", i+1);
head = tail;
}
/* Read vertex weights */
if (readwgts) {
for (l=0; l<ncon; l++) {
#ifdef __MSC__
mat->rwgts[i*ncon+l] = (float)strtod(head, &tail);
#else
mat->rwgts[i*ncon+l] = strtof(head, &tail);
#endif
if (tail == head)
errexit("The line for vertex %zd does not have enough weights "
"for the %d constraints.\n", i+1, ncon);
if (mat->rwgts[i*ncon+l] < 0)
errexit("The weight vertex %zd and constraint %zd must be >= 0\n", i+1, l);
head = tail;
}
}
/* Read the rest of the row */
while (1) {
ival = (int)strtol(head, &tail, 0);
if (tail == head)
break;
head = tail;
if ((rowind[k] = ival + numbering) < 0)
gk_errexit(SIGERR, "Error: Invalid column number %d at row %zd.\n", ival, i);
ncols = gk_max(rowind[k], ncols);
if (readvals == 1) {
#ifdef __MSC__
fval = (float)strtod(head, &tail);
#else
fval = strtof(head, &tail);
#endif
if (tail == head)
gk_errexit(SIGERR, "Value could not be found for column! Row:%zd, NNZ:%zd\n", i, k);
head = tail;
rowval[k] = fval;
}
k++;
}
rowptr[i+1] = k;
}
if (format == GK_CSR_FMT_METIS) {
ASSERT(ncols+1 == mat->nrows);
mat->ncols = mat->nrows;
}
else {
mat->ncols = ncols+1;
}
if (k != nnz)
gk_errexit(SIGERR, "gk_csr_Read: Something wrong with the number of nonzeros in "
"the input file. NNZ=%zd, ActualNNZ=%zd.\n", nnz, k);
gk_fclose(fpin);
gk_free((void **)&line, LTERM);
return mat;
}
/**************************************************************************/
/*! Writes the row-based structure of a matrix into a file.
\param mat is the matrix to be written,
\param filename is the name of the output file.
\param format is one of: GK_CSR_FMT_CLUTO, GK_CSR_FMT_CSR,
GK_CSR_FMT_BINROW, GK_CSR_FMT_BINCOL, GK_CSR_FMT_BIJV.
\param writevals is either 1 or 0 indicating if the values will be
written or not. This is only applicable when GK_CSR_FMT_CSR
is used.
\param numbering is either 1 or 0 indicating if the internal 0-based
numbering will be shifted by one or not during output. This
is only applicable when GK_CSR_FMT_CSR is used.
*/
/**************************************************************************/
void gk_csr_Write(gk_csr_t *mat, char *filename, int format, int writevals, int numbering)
{
ssize_t i, j;
int32_t edge[2];
FILE *fpout;
format = gk_csr_DetermineFormat(filename, format);
switch (format) {
case GK_CSR_FMT_METIS:
if (mat->nrows != mat->ncols || mat->rowptr[mat->nrows]%2 == 1)
gk_errexit(SIGERR, "METIS output format requires a square symmetric matrix.\n");
if (filename)
fpout = gk_fopen(filename, "w", "gk_csr_Write: fpout");
else
fpout = stdout;
fprintf(fpout, "%d %zd\n", mat->nrows, mat->rowptr[mat->nrows]/2);
for (i=0; i<mat->nrows; i++) {
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++)
fprintf(fpout, " %d", mat->rowind[j]+1);
fprintf(fpout, "\n");
}
if (filename)
gk_fclose(fpout);
break;
case GK_CSR_FMT_BINROW:
if (filename == NULL)
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
fpout = gk_fopen(filename, "wb", "gk_csr_Write: fpout");
fwrite(&(mat->nrows), sizeof(int32_t), 1, fpout);
fwrite(&(mat->ncols), sizeof(int32_t), 1, fpout);
fwrite(mat->rowptr, sizeof(ssize_t), mat->nrows+1, fpout);
fwrite(mat->rowind, sizeof(int32_t), mat->rowptr[mat->nrows], fpout);
if (writevals)
fwrite(mat->rowval, sizeof(float), mat->rowptr[mat->nrows], fpout);
gk_fclose(fpout);
return;
break;
case GK_CSR_FMT_BINCOL:
if (filename == NULL)
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
fpout = gk_fopen(filename, "wb", "gk_csr_Write: fpout");
fwrite(&(mat->nrows), sizeof(int32_t), 1, fpout);
fwrite(&(mat->ncols), sizeof(int32_t), 1, fpout);
fwrite(mat->colptr, sizeof(ssize_t), mat->ncols+1, fpout);
fwrite(mat->colind, sizeof(int32_t), mat->colptr[mat->ncols], fpout);
if (writevals)
fwrite(mat->colval, sizeof(float), mat->colptr[mat->ncols], fpout);
gk_fclose(fpout);
return;
break;
case GK_CSR_FMT_IJV:
if (filename == NULL)
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
fpout = gk_fopen(filename, "w", "gk_csr_Write: fpout");
numbering = (numbering ? 1 : 0);
for (i=0; i<mat->nrows; i++) {
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++) {
if (writevals)
fprintf(fpout, "%zd %d %.8f\n", i+numbering, mat->rowind[j]+numbering, mat->rowval[j]);
else
fprintf(fpout, "%zd %d\n", i+numbering, mat->rowind[j]+numbering);
}
}
gk_fclose(fpout);
return;
break;
case GK_CSR_FMT_BIJV:
if (filename == NULL)
gk_errexit(SIGERR, "The filename parameter cannot be NULL.\n");
fpout = gk_fopen(filename, "wb", "gk_csr_Write: fpout");
fwrite(&(mat->nrows), sizeof(int32_t), 1, fpout);
fwrite(&(mat->ncols), sizeof(int32_t), 1, fpout);
fwrite(&(mat->rowptr[mat->nrows]), sizeof(size_t), 1, fpout);
fwrite(&writevals, sizeof(int32_t), 1, fpout);
for (i=0; i<mat->nrows; i++) {
edge[0] = i;
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++) {
edge[1] = mat->rowind[j];
fwrite(edge, sizeof(int32_t), 2, fpout);
if (writevals)
fwrite(&(mat->rowval[j]), sizeof(float), 1, fpout);
}
}
gk_fclose(fpout);
return;
break;
default:
if (filename)
fpout = gk_fopen(filename, "w", "gk_csr_Write: fpout");
else
fpout = stdout;
if (format == GK_CSR_FMT_CLUTO) {
fprintf(fpout, "%d %d %zd\n", mat->nrows, mat->ncols, mat->rowptr[mat->nrows]);
writevals = 1;
numbering = 1;
}
for (i=0; i<mat->nrows; i++) {
for (j=mat->rowptr[i]; j<mat->rowptr[i+1]; j++) {
fprintf(fpout, " %d", mat->rowind[j]+(numbering ? 1 : 0));
if (writevals)
fprintf(fpout, " %f", mat->rowval[j]);
}
fprintf(fpout, "\n");
}
if (filename)
gk_fclose(fpout);
}
}
/*************************************************************************/
/*! Prunes certain rows/columns of the matrix. The prunning takes place
by analyzing the row structure of the matrix. The prunning takes place
by removing rows/columns but it does not affect the numbering of the
remaining rows/columns.
\param mat the matrix to be prunned,
\param what indicates if the rows (GK_CSR_ROW) or the columns (GK_CSR_COL)
of the matrix will be prunned,
\param minf is the minimum number of rows (columns) that a column (row) must
be present in order to be kept,
\param maxf is the maximum number of rows (columns) that a column (row) must
be present at in order to be kept.
\returns the prunned matrix consisting only of its row-based structure.
The input matrix is not modified.
*/
/**************************************************************************/
gk_csr_t *gk_csr_Prune(gk_csr_t *mat, int what, int minf, int maxf)
{
ssize_t i, j, nnz;
int nrows, ncols;
ssize_t *rowptr, *nrowptr;
int *rowind, *nrowind, *collen;
float *rowval, *nrowval;
gk_csr_t *nmat;
nmat = gk_csr_Create();
nrows = nmat->nrows = mat->nrows;
ncols = nmat->ncols = mat->ncols;
rowptr = mat->rowptr;
rowind = mat->rowind;
rowval = mat->rowval;
nrowptr = nmat->rowptr = gk_zmalloc(nrows+1, "gk_csr_Prune: nrowptr");
nrowind = nmat->rowind = gk_imalloc(rowptr[nrows], "gk_csr_Prune: nrowind");
nrowval = nmat->rowval = gk_fmalloc(rowptr[nrows], "gk_csr_Prune: nrowval");
switch (what) {
case GK_CSR_COL:
collen = gk_ismalloc(ncols, 0, "gk_csr_Prune: collen");
for (i=0; i<nrows; i++) {
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
ASSERT(rowind[j] < ncols);
collen[rowind[j]]++;
}
}
for (i=0; i<ncols; i++)
collen[i] = (collen[i] >= minf && collen[i] <= maxf ? 1 : 0);
nrowptr[0] = 0;
for (nnz=0, i=0; i<nrows; i++) {
for (j=rowptr[i]; j<rowptr[i+1]; j++) {
if (collen[rowind[j]]) {
nrowind[nnz] = rowind[j];
nrowval[nnz] = rowval[j];
nnz++;
}
}
nrowptr[i+1] = nnz;
}
gk_free((void **)&collen, LTERM);
break;
case GK_CSR_ROW:
nrowptr[0] = 0;
for (nnz=0, i=0; i<nrows; i++) {
if (rowptr[i+1]-rowptr[i] >= minf && rowptr[i+1]-rowptr[i] <= maxf) {