-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain_search.py
180 lines (150 loc) · 7.29 KB
/
train_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import sys
import numpy as np
import torch
import utils
import logging
import argparse
import torch.nn as nn
import torch.utils
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from PIL import Image
from torch.autograd import Variable
from model_search import Network
from architect_enhance import Architect as Enhence_Architect
from architect_denoise import Architect as Denoise_Architect
from multi_read_data import MemoryFriendlyLoader
parser = argparse.ArgumentParser("ruas")
parser.add_argument('--data', type=str, default='../data', help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.005, help='init learning rate')
parser.add_argument('--learning_rate_min', type=float, default=0.001, help='min learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epochs', type=int, default=20, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=16, help='num of init channels')
parser.add_argument('--layers', type=int, default=8, help='total number of layers')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.3, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
parser.add_argument('--unrolled', action='store_true', default=False, help='use one-step unrolled validation loss')
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
args = parser.parse_args()
EXP_path = r'./EXP/Cooperative-Search/'
if not os.path.isdir(EXP_path):
os.mkdir(EXP_path)
inference_dir = EXP_path + '/inference/'
if not os.path.isdir(inference_dir):
os.mkdir(inference_dir)
model_path = EXP_path + '\model/'
if not os.path.isdir(model_path):
os.mkdir(model_path)
arch_path = EXP_path + '/arch/'
if not os.path.isdir(arch_path):
os.mkdir(arch_path)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(EXP_path, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
model = Network()
model = model.cuda()
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
optimizer = torch.optim.SGD(
model.parameters(),
args.learning_rate,
momentum=args.momentum)
optimizer_enhance = torch.optim.SGD(
model.enhance_net_parameters(),
args.learning_rate,
momentum=args.momentum)
optimizer_denoise = torch.optim.SGD(
model.denoise_net_parameters(),
args.learning_rate,
momentum=args.momentum)
# prepare DataLoader
train_low_data_names = r'D:\ZJA\data\LOL\trainA/*.png'
# train_low_data_names = r'H:\image-enhance\UPE500\trainA/*.png'
TrainDataset = MemoryFriendlyLoader(img_dir=train_low_data_names, task='train')
valid_low_data_names = r'D:\ZJA\data\LOL\validA/*.png'
# valid_low_data_names = r'H:\image-enhance\UPE500\validA/*.png'
ValidDataset = MemoryFriendlyLoader(img_dir=valid_low_data_names, task='valid')
train_queue = torch.utils.data.DataLoader(
TrainDataset, batch_size=args.batch_size,
pin_memory=True, num_workers=0)
valid_queue = torch.utils.data.DataLoader(
ValidDataset, batch_size=args.batch_size,
pin_memory=True, num_workers=0)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, float(args.epochs), eta_min=args.learning_rate_min)
enhance_architect = Enhence_Architect(model, args)
denoise_architect = Denoise_Architect(model, args)
for epoch in range(args.epochs):
scheduler.step()
lr = scheduler.get_lr()[0]
logging.info('epoch %d lr %e', epoch, lr)
logging.info('Architect of IEM:')
logging.info('iem = %s', str(0))
genotype = model.genotype(0, task='enhance')
logging.info('genotype = %s', genotype)
logging.info('iem %s', str(0))
logging.info('%s', F.softmax(model.alphas_enhances[0], dim=-1))
logging.info('Architect of NRM:')
logging.info('nrm = %s', str(0))
genotype = model.genotype(0, task='denoise')
logging.info('genotype = %s', genotype)
logging.info('nrm %s', str(0))
logging.info('%s', F.softmax(model.alphas_denoises[0], dim=-1))
# training
train(train_queue, valid_queue, model, enhance_architect, denoise_architect, optimizer_enhance,
optimizer_denoise, lr, epoch)
def train(train_queue, valid_queue, model, enhance_architect, denoise_architect, optimizer_enhance, optimizer_denoise,
lr, epoch):
for step, (input) in enumerate(train_queue):
model.train()
n = input.size(0)
input = Variable(input, requires_grad=False).cuda()
# get a random minibatch from the search queue with replacement
input_search = next(iter(valid_queue))
input_search = Variable(input_search, requires_grad=False).cuda()
enhcence_loss = 0
enhance_architect.step(input, input, input_search, input_search, lr, optimizer_enhance, unrolled=True)
optimizer_enhance.zero_grad()
enhcence_loss = model._enhcence_loss(input, input)
enhcence_loss.backward()
nn.utils.clip_grad_norm(model.enhance_net_parameters(), args.grad_clip)
optimizer_enhance.step()
denoise_loss = 0
if step % 10 == 0:
denoise_architect.step(input, input, input_search, input_search, lr, optimizer_denoise, unrolled=True)
optimizer_denoise.zero_grad()
denoise_loss = model._denoise_loss(input, input)
denoise_loss.backward()
nn.utils.clip_grad_norm(model.denoise_net_parameters(), args.grad_clip)
optimizer_denoise.step()
if step % args.report_freq == 0:
logging.info('train %03d %f', step, enhcence_loss + denoise_loss)
if __name__ == '__main__':
main()