Several lines of code to be executed withing måsvingar {}
$$\frac{(B, s) \rightarrow (v, s^\prime) }{ ({S}, s) \rightarrow (v, s^{\prime})}$$
Add B to A (A + B)
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 + v_2, s) \rightarrow v_1^\prime + v_2^\prime}$$
SUBTRACT B From A (A-B)
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 - v_2, s) \rightarrow v_1^\prime - v_2^\prime}$$
Multiply A WITH B (A*B)
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 * v_2, s) \rightarrow v_1^\prime * v_2^\prime}$$
Divide A with B (A/B)
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 / v_2, s) \rightarrow v_1^\prime / v_2^\prime}$$
IF A > B, so A = 10, B = 1 would be true. But not A = 5, B = 6.
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 > v_2, s) \rightarrow v_1^\prime > v_2^\prime}$$
IF A < B, so A = 5, B = 6 would be true. But not A = 10, B = 1.
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 < v_2, s) \rightarrow v_1^\prime < v_2^\prime}$$
If A EQUALS B
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 == v_2, s) \rightarrow v_1^\prime == v_2^\prime}$$
if both A or B is the same value (true or false), then it is true.
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 \&\& v_2, s) \rightarrow v_1^\prime \&\& v_2^\prime}$$
If A or B is true, then it is true.
$$\frac{(v_1, s) \rightarrow v_1^\prime \space (v_2, s) \rightarrow v_2^\prime}{ (v_1 || v_2, s) \rightarrow v_1^\prime || v_2^\prime}$$
Negate bool. So True => False, False => True
$$\frac{(v, s) \rightarrow v^\prime}{ (!v, s) \rightarrow !v^\prime}$$
Read value of reference.
$$\frac{(Ref(v), s) \rightarrow v^\prime}{ (*(Ref(v)), s) \rightarrow v^\prime}$$
Allow varaible to be changed (mutable)
$$\frac{(v, s) \rightarrow v^\prime}{ (v), s) \rightarrow \text{mut } v^\prime}$$
Borrow data
$$\frac{(v, s) \rightarrow Ref(v)^\prime}{ (\&v, s) \rightarrow Ref(v)^\prime}$$
Set value of a variable, like a = b, or a = 5 etc
$$\frac{(v, s) \rightarrow v^\prime \space (E, s) \rightarrow s^\prime}{ (v \space = \space {E}, s) \rightarrow s^\prime}$$
A callable block of code.
$$\frac{(v, s) \rightarrow v^\prime \space (B, s) \rightarrow s^\prime}{ (\text{fn } v \space {B}, s) \rightarrow s^\prime}$$
Assign variable.
$$\frac{(v,s) \rightarrow v^\prime \space (E,s) \rightarrow s^\prime}{ (\text{let } v \space = \space {E},s) \rightarrow s^\prime}$$
While a condition is true loop through this block
$$\frac{(v, s) \rightarrow v^\prime \space (B, s) \rightarrow s^\prime}{ (\text{while } v \space {B}, s) \rightarrow s^\prime}$$
If [condition], if the condition is True, do Then. Else do nada
$$\frac{(v, s) \rightarrow v^\prime \space (B_1, s) \rightarrow s^\prime}{ (\text{If } v \space {B_1}, s) \rightarrow s^\prime}$$
If [condition], if the condition is True, do This, else do that.
$$\frac{(v, s) \rightarrow v^\prime \space (B_1, s) \rightarrow s^\prime \space (B_2, s) \rightarrow s^{\prime\prime}}{ (\text{If } v \space {B_1} \space else \space {B_2}, s) \rightarrow s^{\prime\prime}}$$
Used for maths, encapsulates a statement. Like (A*B)^C and A*B^C
$$\frac{(E, s) \rightarrow v^\prime}{ ((E), s) \rightarrow v^\prime}$$