-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathapp.py
360 lines (318 loc) · 14.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import warnings
warnings.simplefilter('ignore')
import os
import cv2
import sys
import pickle
import subprocess
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model
from src.utils import gen_from_image, gen_from_text, get_med
from flask import Flask, render_template,request,redirect,url_for
from src.Multi_Disease_System.Parkinsons_Disease_Prediction.pipelines.Prediction_pipeline import Parkinsons_Data, PredictParkinsons
from src.Multi_Disease_System.Breast_Cancer_Prediction.pipelines.Prediction_pipeline import BCancer_Data, PredictBCancer
from src.Multi_Disease_System.Diabetes_Disease_Prediction.pipelines.Prediction_pipeline import Diabetes_Data, PredictDiabetes
from src.Multi_Disease_System.Heart_Disease_Prediction.pipelines.Prediction_pipeline import CustomData, PredictPipeline
brain_model = load_model('Artifacts\Brain_Tumour\BrainModel.h5')
kidney_model = load_model('Artifacts\Kidney_Disease\Kidney_Model.h5')
#lung_model = load_model('Artifacts\Lung_Disease\Lung_Model.h5')
livermodel = pickle.load(open('Artifacts\Liver_Disease\Liver_Model.pkl', 'rb'))
#liverpreprocessor = pickle.load(open('Artifacts\Liver_Disease\Liver_Preprocessor.pkl', 'rb'))
app = Flask(__name__)
@app.route('/')
def index():
try:
return render_template('landing.html')
except:
return render_template('error.html')
@app.route('/services')
def index1():
try:
return render_template('services.html')
except:
return render_template('error.html')
'''@app.route('/landing')
def other():
return render_template('landing.html')'''
@app.route('/chatbot')
def run_streamlit():
try:
subprocess.Popen(['streamlit', 'run', 'src/GeminiMed/app.py'])
return redirect(url_for('index'))
except:
return render_template('error.html')
@app.route('/recognition')
def run_streamlit1():
try:
subprocess.Popen(['streamlit', 'run', 'src/MedicineRecognition/app.py'])
return redirect(url_for('index'))
except:
return render_template('error.html')
@app.route('/food/<disease>/<tumor_type>', methods=['GET', 'POST'])
def more_info(disease, tumor_type):
if request.method == 'POST':
prompt = f"Give me information about the {disease} for this suffering type {tumor_type} in the following paragraph format:\
Disease Name: \
Disease Description:\
Disease Symptoms:\
Disease Treatment:\
Disease Food to Eat:\
Disease Food to Avoid:"
# Generate information based on the disease and tumor type
answer = text_model.generate_content(prompt) # Replace with actual generated content
ans = answer.replace('*', '\n')
return render_template("llm.html", answer=ans)
return render_template("llm.html", disease=disease, tumor_type=tumor_type)
@app.route('/brain', methods=['GET', 'POST'])
def brain():
if request.method == 'POST':
try:
def preprocess_image(image):
img = Image.open(image)
img = img.resize((299, 299))
img = np.asarray(img)
img = np.expand_dims(img, axis=0)
img = img / 255
return img
class_labels = {0: 'Glioma Tumour', 1: 'Meningioma Tumour', 2: 'No Tumour', 3: 'Pituitary Tumour'}
file = request.files['file']
file_path = 'temp.jpg'
file.save(file_path)
processed_image = preprocess_image(file_path)
predictions = brain_model.predict(processed_image)
prediction_label = class_labels[np.argmax(predictions)]
confidence = np.max(predictions)
os.remove(file_path)
if request.form.get('button') == 'More Info':
if prediction_label == 'Glioma Tumour':
return redirect(url_for('brain_tumour1', disease='brain', tumor_type='glioma'))
elif prediction_label == 'Meningioma Tumour':
return redirect(url_for('brain_tumour2', disease='brain', tumor_type='meningioma'))
elif prediction_label == 'Pituitary Tumour':
return redirect(url_for('brain_tumour3', disease='brain', tumor_type='pituitary'))
return render_template('brain_tumour.html', prediction=prediction_label)
except:
return render_template('error.html')
return render_template('brain_tumour.html')
@app.route('/bcancer', methods=["GET", "POST"])
def brain_post():
if request.method == 'POST':
try:
data = BCancer_Data(
texture_mean = float(request.form['texture_mean']),
smoothness_mean = float(request.form['smoothness_mean']),
compactness_mean = float(request.form['compactness_mean']),
concave_points_mean = float(request.form['concave_points_mean']),
symmetry_mean = float(request.form['symmetry_mean']),
fractal_dimension_mean = float(request.form['fractal_dimension_mean']),
texture_se = float(request.form['texture_se']),
area_se = float(request.form['area_se']),
smoothness_se = float(request.form['smoothness_se']),
compactness_se = float(request.form['compactness_se']),
concavity_se = float(request.form['concavity_se']),
concave_points_se = float(request.form['concave_points_se']),
symmetry_se = float(request.form['symmetry_se']),
fractal_dimension_se = float(request.form['fractal_dimension_se']),
texture_worst = float(request.form['texture_worst']),
area_worst = float(request.form['area_worst']),
smoothness_worst = float(request.form['smoothness_worst']),
compactness_worst = float(request.form['compactness_worst']),
concavity_worst = float(request.form['concavity_worst']),
concave_points_worst = float(request.form['concave_points_worst']),
symmetry_worst = float(request.form['symmetry_worst']),
fractal_dimension_worst = float(request.form['fractal_dimension_worst'])
)
final_data = data.get_data_as_dataframe()
predict_pipeline = PredictBCancer()
pred = predict_pipeline.predict(final_data)
an = round(pred[0], 2)
return render_template('bcancer.html', final_result=an)
except:
pass
return render_template('bcancer.html')
@app.route('/diabetes', methods=["GET", "POST"])
def diabetes():
if request.method == "POST":
try:
data = Diabetes_Data(
pregnancies=request.form.get("pregnancies"),
Glucose=request.form.get("Glucose"),
BloodPressure=request.form.get("BloodPressure"),
skin_thickness=request.form.get("skin_thickness"),
insulin=request.form.get("insulin"),
BMI=request.form.get("BMI"),
DiabetesPedigreeFunction=request.form.get("DiabetesPedigreeFunction"),
Age=request.form.get("Age"))
final_data = data.get_data_as_dataframe()
predict_pipeline = PredictDiabetes()
pred = predict_pipeline.predict(final_data)
return render_template("diabetes.html", final_result=pred)
except Exception as e:
pass
return render_template("diabetes.html")
@app.route('/heart', methods=["GET", "POST"])
def heart():
if request.method == "POST":
try:
data = CustomData(
age=request.form.get("age"),
sex=request.form.get("sex"),
cp=(request.form.get("cp")),
trestbps=(request.form.get("trestbps")),
chol=(request.form.get("chol")),
fbs=request.form.get("fbs"),
restecg=request.form.get("restecg"),
thalach=(request.form.get("thalach")),
exang=request.form.get("exang"),
oldpeak=request.form.get("oldpeak"),
slope=request.form.get("slope"),
ca=request.form.get("ca"),
thal=(request.form.get("thal")))
final_data = data.get_data_as_dataframe()
predict_pipeline = PredictPipeline()
pred = predict_pipeline.predict(final_data)
result = round(pred[0], 2)
return render_template("heart.html", final_result=result)
except:
return render_template("error.html")
return render_template("heart.html")
@app.route('/kidney', methods=['GET', 'POST'])
def kidney():
if request.method == 'POST':
try:
class_labels = {0: 'Cyst', 1: 'Normal', 2: 'Stone', 3: 'Tumor'}
file = request.files['file']
if file.filename == '':
return render_template('error.html', message='No file selected')
file_path = 'temp.jpg'
file.save(file_path)
img = cv2.imread(file_path)
img = cv2.resize(img, (150, 150))
img = img / 255.0
img = np.expand_dims(img, axis=0)
predictions = kidney_model.predict(img)
prediction_label = class_labels[np.argmax(predictions)]
os.remove(file_path)
return render_template('kidney.html', prediction=prediction_label)
except Exception as e:
return render_template('error.html', message=str(e))
return render_template('kidney.html')
'''
@app.route('/lung')
def predict():
if request.method == 'POST':
img_file = request.files['file']
img_path = "static/" + img_file.filename
img_file.save(img_path)
# Preprocess the image
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array /= 255.0
# Make prediction
prediction = lung_model.predict(img_array)
predicted_class = np.argmax(prediction)
# Define classes
classes = ['COVID-19', 'Normal', 'Pneumonia-Bacterial', 'Pneumonia-Viral', 'Tuberculosis']
return render_template('result.html', img_path=img_path, prediction=classes[predicted_class])
return render_template('lung.html')'''
@app.route('/liver', methods=['GET', 'POST'])
def liver():
if request.method == 'POST':
age = float(request.form['age'])
gender = int(request.form['gender'])
total_bilirubin = float(request.form['total_bilirubin'])
direct_bilirubin = float(request.form['direct_bilirubin'])
alkaline_phosphotase = float(request.form['alkaline_phosphotase'])
alamine_aminotransferase = float(request.form['alamine_aminotransferase'])
aspartate_aminotransferase = float(request.form['aspartate_aminotransferase'])
total_proteins = float(request.form['total_proteins'])
albumin = float(request.form['albumin'])
albumin_globulin_ratio = float(request.form['albumin_globulin_ratio'])
# Preprocess features
features = np.array([age, gender, total_bilirubin, direct_bilirubin, alkaline_phosphotase,
alamine_aminotransferase, aspartate_aminotransferase, total_proteins,
albumin, albumin_globulin_ratio]).reshape(1, -1)
# Make prediction - (livermodel and liverpreprocessor assumed to be defined elsewhere)
prediction = livermodel.predict(features)[0]
probability = livermodel.predict_proba(features)[0][1]
# Prepare response
if prediction == 1:
result = 'Positive'
else:
result = 'Negative'
return render_template('liver.html', prediction=result)
return render_template('liver.html')
@app.route('/malaria')
def malaria():
try:
return render_template('malaria.html')
except:
return render_template('error.html')
@app.route('/parkinsons', methods=["GET", "POST"])
def parkinsons():
if request.method == 'POST':
try:
data = Parkinsons_Data(
MDVPFO=float(request.form.get("MDVPFO")),
MDVPFHI=float(request.form.get("MDVPFHI")),
MDVPFLO=float(request.form.get("MDVPFLO")),
MDVPJ=float(request.form.get("MDVPJ")),
RPDE=float(request.form.get("RPDE")),
DFA=float(request.form.get("DFA")),
spread2=float(request.form.get("spread2")),
D2=float(request.form.get("D2")))
final_data = data.get_data_as_dataframe()
predict_pipeline = PredictParkinsons()
pred = predict_pipeline.predict(final_data)
result = round(pred[0], 2)
return render_template("parkinsons.html", final_result=result)
except:
return render_template("error.html")
return render_template('parkinsons.html')
import os
import google.generativeai as genai
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
text_model = genai.GenerativeModel('gemini-pro')
@app.route('/brain_tumour1')
def brain_tumour1(disease, tumor_type):
prompt = f"Give me information about the brain disease for this suffering type glioma tumour in the following paragraph format:\
Disease Name: \
Disease Description:\
Disease Symptoms:\
Disease Treatment:\
Disease Food to Eat:\
Disease Food to Avoid:"
# Generate information based on the disease and tumor type
answer = text_model.generate_content(prompt) # Replace with actual generated content
ans = answer.replace('*', '\n')
return render_template("llm.html", answer=ans)
@app.route('/brain_tumour2')
def brain_tumour2(disease, tumor_type):
prompt = f"Give me information about the brain disease for this suffering type meningioma tumour in the following paragraph format:\
Disease Name: \
Disease Description:\
Disease Symptoms:\
Disease Treatment:\
Disease Food to Eat:\
Disease Food to Avoid:"
# Generate information based on the disease and tumor type
answer = text_model.generate_content(prompt) # Replace with actual generated content
ans = answer.replace('*', '\n')
return render_template("llm.html", answer=ans)
@app.route('/brain_tumour3')
def brain_tumour3(disease, tumor_type):
prompt = f"Give me information about the brain disease for this suffering type pituatary tumour in the following paragraph format:\
Disease Name: \
Disease Description:\
Disease Symptoms:\
Disease Treatment:\
Disease Food to Eat:\
Disease Food to Avoid:"
# Generate information based on the disease and tumor type
answer = text_model.generate_content(prompt) # Replace with actual generated content
ans = answer.replace('*', '\n')
return render_template("llm.html", answer=ans)
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5000)