-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmk_data.py
195 lines (167 loc) · 5.52 KB
/
mk_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python3
# Author: Armit
# Create Time: 2024/02/01
import pickle as pkl
from zipfile import ZipFile
from tqdm import tqdm
from numba import njit, jit
from scipy.io.wavfile import write as save_wav
from utils import *
DATA_FILES = {
'train.zip': 'train',
'test1.zip': 'test',
'test2.zip': 'test',
}
Processed = Dict[str, ndarray] # 'X'/'Y' => data mat
Unsampled = Dict[int, List[ndarray]] # cls => tracks
def process_train(fp_in:Path) -> Processed:
X, Y = [], []
zf = ZipFile(fp_in)
for zinfo in tqdm(zf.infolist()):
if zinfo.is_dir(): continue
label = int(Path(zinfo.filename).parent.name)
Y.append(label)
with zf.open(zinfo) as fh:
data = np.loadtxt(fh, dtype=np.float32)
X.append(data)
X = np.stack(X, axis=0).astype(np.float32)
Y = np.stack(Y, axis=0).astype(np.uint8)
return {'X': X, 'Y': Y}
def process_test(fp_in:Path) -> Processed:
X = []
zf = ZipFile(fp_in)
zinfos = zf.infolist() # NOTE: 保持有序!
zinfos.sort(key=lambda zinfo: int(Path(zinfo.filename).stem))
for zinfo in tqdm(zinfos):
if zinfo.is_dir(): continue
with zf.open(zinfo) as fh:
data = np.loadtxt(fh, dtype=np.float32)
X.append(data)
X = np.stack(X, axis=0).astype(np.float32)
return {'X': X}
def process_cache():
for fn, kind in DATA_FILES.items():
fp_in = DATA_PATH / fn
if not fp_in.exists(): continue
fp_out = fp_in.with_suffix('.npz')
if fp_out.exists():
print(f'>> ignore due to file exists: {fp_out.name}')
continue
print(f'>> processing {fn}...')
data: Processed = globals()[f'process_{kind}'](fp_in)
for k, v in data.items():
print(f'{k}.shape:', v.shape)
np.savez_compressed(fp_out, **data)
@njit
def allclose(x:ndarray, y:ndarray) -> bool:
for i in range(len(x)):
if abs(x[i] - y[i]) > 1e-8:
return False
return True
@njit
def try_merge(x:ndarray, y:ndarray, min_overlap:int=32) -> Optional[ndarray]:
#allclose = lambda x, y: np.allclose(x, y, atol=1e-8, rtol=0)
# assure x is shorter than y
if len(x) > len(y): x, y = y, x
xlen, ylen = len(x), len(y)
# case 1: y can absorb x
for i in range(ylen - xlen + 1):
if allclose(x, y[i : i + xlen]):
return y
# case 2: x can extend y by the right end
for i in range(1, xlen - min_overlap + 1): # at least 32 samples overlap
if allclose(x[:-i], y[-(xlen - i):]):
return np.concatenate((y, x[-i:]))
# case 3: x can extend y by the left end
for i in range(1, xlen - min_overlap + 1): # at least 32 samples overlap
if allclose(x[i:], y[:xlen - i]):
return np.concatenate((x[:i], y))
def merge_pool(pool:List[ndarray]) -> List[ndarray]:
print(f'[merge_pool] size: {len(pool)}')
n_iter = 0
while True:
merged = []
flag = [False] * len(pool)
for i, x in enumerate(pool):
if flag[i]: continue
for j, y in enumerate(pool):
if flag[j]: continue
if j <= i: continue
z = try_merge(x, y)
if z is None: continue # cannot merge
flag[i] = flag[j] = True
merged.append(z)
#print(f'>> merge: {len(x)}({i}) + {len(y)}({j}) => {len(z)}')
break # use x only once
n_iter += 1
print(f'>> n_iter: {n_iter}, n_merged: {len(merged)}, n_pool: {len(pool) - len(merged)}')
if not merged: break
pool = merged + [pool[i] for i, v in enumerate(flag) if not v]
pool.sort(key=(lambda x: len(x)), reverse=True)
return pool
def unsample():
for fn, kind in DATA_FILES.items():
if kind != 'train': continue # only unsample "train" split
fp_raw = DATA_PATH / fn
fp_in = fp_raw.with_suffix('.npz')
if not fp_in.exists(): continue
fp_out = fp_in.with_name(f'{fp_in.stem}_unsample.pkl')
if fp_out.exists():
print(f'>> ignore due to file exists: {fp_out.name}')
continue
print(f'>> unsampling {fp_in}...')
data = np.load(fp_in)
X, Y = data['X'], data['Y']
unsampled: Unsampled = {}
for x, y in zip(X, Y):
if y not in unsampled:
unsampled[y] = []
unsampled[y].append(x)
for k, pool in unsampled.items():
unsampled[k] = merge_pool(pool)
for k, v in unsampled.items():
print(f'[class-{k}]', end=' ')
for x in v:
print(len(x), end=', ')
print()
with open(fp_out, 'wb') as fh:
pkl.dump(unsampled, fh)
def wavify_train(fp_in:Path):
split = fp_in.stem.split('_')[0]
dp_out = fp_in.with_name(f'{split}.wav')
dp_out.mkdir(exist_ok=True)
with open(fp_in, 'rb') as fh:
unsampled: Unsampled = pkl.load(fh)
for cls, ls in unsampled.items():
for i, x in enumerate(ls):
fp = dp_out / f'{split}_cls={cls}-{i}.wav'
if fp.exists(): continue
save_wav(str(fp), SAMPLE_RATE, wav_norm(x))
def wavify_test(fp_in:Path):
split = fp_in.stem.split('_')[0]
dp_out = fp_in.with_name(f'{split}.wav')
dp_out.mkdir(exist_ok=True)
data = np.load(fp_in)
X = data['X']
for i, x in enumerate(X):
fp = dp_out / f'{split}-{i}.wav'
if fp.exists(): continue
x_exp = np.concatenate([x] * 10, axis=0)
save_wav(str(fp), SAMPLE_RATE, wav_norm(x_exp))
def wavify():
for fn, kind in DATA_FILES.items():
fp_raw = DATA_PATH / fn
if kind == 'train':
fp_in = fp_raw.with_name(f'{fp_raw.stem}_unsample.pkl')
else:
fp_in = fp_raw.with_name(f'{fp_raw.stem}.npz')
if not fp_in.exists(): continue
print(f'>> wavifying {fp_in.name}...')
globals()[f'wavify_{kind}'](fp_in)
if __name__ == '__main__':
print('[process_cache]')
process_cache()
print('[unsample]')
unsample()
print('[wavify]')
wavify()