-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHelper.R
70 lines (50 loc) · 2.18 KB
/
Helper.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
### helper
local({
r <- getOption("repos")
r["CRAN"] <- "https://cran.rstudio.com/"
r["BioCsoft"] <- "https://bioconductor.org/packages/release/bioc"
r["BioCann"] <- "https://bioconductor.org/packages/release/data/annotation"
r["BioCexp"] <- "https://bioconductor.org/packages/release/data/experiment"
options(repos = r)
})
library(shiny)
runGitHub("KJPMolgenLab/miRNA_Analyzer", ref="main")
setwd("C:/Users/andreas_chiocchetti/OneDrive/Documents/Frankfurt Uni/Kooperationen/schubert/miRNApp/miRNA_App/")
input=c()
input$Readsfile="C:/Users/andreas_chiocchetti/OneDrive/Documents/Frankfurt Uni/Kooperationen/schubert/Analysis_20220808_Hanna/QiagenSummary_Hanna IgA+-.xlsx"
input$Samplefile = "C:/Users/andreas_chiocchetti/OneDrive/Documents/Frankfurt Uni/Kooperationen/schubert/Analysis_20220808_Hanna/Metadata_Hanna.xlsx"
#input$Readsfile="C:/Users/andreas_chiocchetti/OneDrive/Documents/Frankfurt Uni/Kooperationen/schubert/Sputum20220510/20202804 8Proben 107316.all_samples.summary (1).xlsx"
#input$Samplefile = "C:/Users/andreas_chiocchetti/OneDrive/Documents/Frankfurt Uni/Kooperationen/schubert/Sputum20220510/Metadata_BO Sputum FFM.xlsx"
#input$Samplefile=input$Readsfile
input$submit = TRUE
input$sampleID = "SampleID"
input$target = "Target"
input$treatment = "IgApos"
input$covariates = "Gender"
input$reads.cutoff = 10e5
input$p.cut = 0.05
input$cor.cut = 0.8
input$run_now = T
input$mincount = 1
input$minInNetwork = 15
input$organism="hsapiens"
input$minsamples = 0
input$sdcutoff=1
input$cook="no"
input$geneunivers="no"
metaRaw <-read.xlsx(input$Samplefile, sheet=1)
ReadsRaw <-read.xlsx(input$Readsfile, sheet="miRNA_piRNA")
myvalues=c()
myvalues$treatment=input$treatment
getlog2FC=function(datavector, groupfactor){
sums = tapply(datavector, groupfactor, sum, na.rm=T)
idxRef = names(sums) == input$Reference
log2FC=log2(sums[!idxRef]/sums[idxRef])
return(log2FC)
}
log2FCs = apply(Reads, 1, function(x){getlog2FC(unlist(x),groupfactor = meta$group)})
datavector = unlist(NReads["hsa-miR-147b",])
groupfactor= dds$group
getlog2FC(datavector=unlist(Reads[1,]), groupfactor=meta$group)
plot(log2FCs[rownames(restab)], restab$log2FoldChange)
boxplot(datavector~groupfactor)