forked from regl-project/regl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark.ibl.specular.brdf.ts
205 lines (164 loc) · 6.26 KB
/
benchmark.ibl.specular.brdf.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/**
* IBL(二):镜面反射部分
*
* 镜面反射部分在整个积分上不是常数,不仅受入射方向影响,还受视角影响。
* Epic Games提出近似解决方案:预计算镜面部分的卷积,为实时计算作了一些妥协,这种方案被称为“分割求和近似法”。
* 技术:镜面反射积分依赖DFG分量,拆分镜面反射积分部分(分割近似)
*
* 步骤:
* 1. 预滤波HRD环境贴图生成 (参见benchmark.specular.hdr.ts实现)
*
* 2. hdr。 BRDF方程求卷积。
* 原理:输入的是法线、夹角、粗糙度,并将卷积的结果存储在纹理中。一般该纹理存储成2D查找纹理(Look up texture, LUT)。
*
*/
import { Mat4, Vec3 } from "kiwi.matrix";
import { GTexture, PipeGL, TAttribute, TUniform } from "../../src";
interface IrradianceAttribute extends TAttribute {
position: number[][];
uv:number[][];
}
interface IrradianceUniform extends TUniform {
roughness: number;
}
const RADIUS = 700;
const CAMERAPOSITION = [0, 0, 5];
const CameraMatrix = new Mat4().lookAt(new Vec3().set(CAMERAPOSITION[0], CAMERAPOSITION[1], CAMERAPOSITION[2]), new Vec3().set(0, 0.0, 0), new Vec3().set(0, 1, 0));
const pipegl0 = new PipeGL({ width: RADIUS, height: RADIUS });
//预过滤HDR环境贴图(镜面反射分量), 基于Hammersley随机生成采样点序方法
//还有位运算符版本:
//https://learnopengl-cn.github.io/07%20PBR/03%20IBL/02%20Specular%20IBL/#hdr
const brdf0 = pipegl0.compile<IrradianceAttribute, IrradianceUniform>({
vert: `precision mediump float;
attribute vec2 position;
attribute vec2 uv;
varying vec2 vUv;
void main(){
vUv = uv;
gl_Position = vec4(position, 1.0, 1.0);
}`,
frag: `precision mediump float;
const float PI = 3.14159265359;
const int SAMPLE_CPUNT = 1024; //生成低差异序列数量(大循环)
uniform float roughness;
varying vec2 vUv;
float GeometrySchlickGGX(float NdotV, float roughness){
float a = roughness;
float k = (a*a)/2.0;
float nom = NdotV;
float denom = NdotV*(1.0-k)+k;
return nom/denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness){
float NdotV = max(dot(N,V), 0.0);
float NdotL = max(dot(N,L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1*ggx2;
}
//预过滤HDR环境贴图(镜面反射分量)
//基于Vander Corput方法生成随机采样序列
float VanDerCorput(int n, int base){
float invBase = 1.0/float(base);
float denom = 1.0;
float r = 0.0;
//
for(int i=0; i<32; ++i){
if(n>0){
denom = mod(float(n),2.0);
r += denom * invBase;
invBase = invBase /2.0;
n = int(float(n)/2.0);
}
}
//
return r;
}
// i:第i个采样点;
// N:总样点点数
// 返回采样点纹理位置,即Xi
vec2 Hammersley(int i, int N){
return vec2(float(i)/float(N), VanDerCorput(i, 2));
}
//重要性采样,基于Hammersley方法生的随机序列进行采样
//计算: 1.特定粗糙度对采样位置的影响 2.基于低差异序列Xi采样
//Epic Games使用了平方粗糙度获取了更好的视觉效果
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness){
float a = roughness*roughness;
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt((1.0-Xi.y)/(1.0+(a*a-1.0)*Xi.y));
float sinTheta = sqrt(1.0-cosTheta*cosTheta);
//球上坐标转换笛卡尔坐标
vec3 H;
H.x = cos(phi)*sinTheta;
H.y = sin(phi)*sinTheta;
H.z = cosTheta;
//切线->空间坐标
vec3 up = abs(N.z)<0.999? vec3(0.0,0.0,1.0):vec3(1.0,0.0,0.0);
vec3 tangent = normalize(cross(up,N));
vec3 bitangent = cross(N,tangent);
//采样坐标换算
vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z;
return normalize(sampleVec);
}
//2D查找纹理
vec2 IntegrateBRDF(float NdotV, float roughness){
vec3 V;
V.x = sqrt(1.0 - NdotV*NdotV);
V.y = 0.0;
V.z = NdotV;
float A = 0.0;
float B = 0.0;
vec3 N = vec3(0.0, 0.0, 1.0);
for(int i=0; i<SAMPLE_CPUNT; ++i){
vec2 Xi = Hammersley(i, SAMPLE_CPUNT);
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
vec3 L = normalize(2.0*dot(V, H)*H - V);
float NdotL = max(L.z, 0.0);
float NdotH = max(H.z, 0.0);
float VdotH = max(dot(V,H), 0.0);
if(NdotL>0.0){
float G = GeometrySmith(N, V, L, roughness);
float G_Vis = (G*VdotH)/(NdotH*NdotV);
float Fc = pow(1.0-VdotH, 5.0); //菲涅尔系数
A += (1.0-Fc)*G_Vis;
B +=Fc*G_Vis;
}
}
A /= float(SAMPLE_CPUNT);
B /= float(SAMPLE_CPUNT);
return vec2(A, B);
}
void main(){
vec2 brdf = IntegrateBRDF(vUv.x, vUv.y);
gl_FragColor = vec4(brdf.x, brdf.y, 0.0, 1.0);
}`,
attributes: {
position: [
[-1, 1],
[1, 1],
[-1, -1],
[-1, -1],
[1, 1],
[1, -1]
],
uv:[
[0,1],
[1,1],
[0,0],
[0,0],
[1,1],
[1,0]
]
},
uniforms: {
roughness: 0.5,
},
count: 6,
status: {
// viewport: [0, 0, RADIUS, RADIUS],
DEPTH_TEST: true,
depthFunc: [0x0203] //参考值小于或等于模板值时通过
}
});
brdf0.draw();