forked from JuanLuisGonzalez/FAL_net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_KITTI.py
381 lines (322 loc) · 17.9 KB
/
Test_KITTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Test_KITTI.py Test trained model on diverse KITTI splits
# Copyright (C) 2021 Juan Luis Gonzalez Bello (juanluisgb@kaist.ac.kr)
# This software is not for commercial use
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import argparse
import time
import numpy as np
from imageio import imsave
import matplotlib.pyplot as plt
from PIL import Image
import Datasets
import models
dataset_names = sorted(name for name in Datasets.__all__)
model_names = sorted(name for name in models.__all__)
parser = argparse.ArgumentParser(description='Testing pan generation',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-d', '--data', metavar='DIR', default='C:\\Users\\Kaist\\Desktop', help='path to dataset')
parser.add_argument('-tn', '--tdataName', metavar='Test Data Set Name', default='Kitti_eigen_test_improved',
choices=dataset_names)
parser.add_argument('-relbase', '--rel_baselne', default=1, help='Relative baseline of testing dataset')
parser.add_argument('-mdisp', '--max_disp', default=300) # of the training patch W
parser.add_argument('-mindisp', '--min_disp', default=2) # of the training patch W
parser.add_argument('-b', '--batch_size', metavar='Batch Size', default=1)
parser.add_argument('-eval', '--evaluate', default=True)
parser.add_argument('-save', '--save', default=False)
parser.add_argument('-save_pc', '--save_pc', default=False)
parser.add_argument('-save_pan', '--save_pan', default=False)
parser.add_argument('-save_input', '--save_input', default=False)
parser.add_argument('-w', '--workers', metavar='Workers', default=4)
parser.add_argument('--sparse', default=False, action='store_true',
help='Depth GT is sparse, automatically seleted when choosing a KITTIdataset')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency')
parser.add_argument('-gpu_no', '--gpu_no', default='1', help='Select your GPU ID, if you have multiple GPU.')
parser.add_argument('-dt', '--dataset', help='Dataset and training stage directory', default='Kitti_stage2')
parser.add_argument('-ts', '--time_stamp', help='Model timestamp', default='10-18-15_42')
parser.add_argument('-m', '--model', help='Model', default='FAL_netB')
parser.add_argument('-no_levels', '--no_levels', default=49, help='Number of quantization levels in MED')
parser.add_argument('-dtl', '--details', help='details',
default=',e20es,b4,lr5e-05/checkpoint.pth.tar')
parser.add_argument('-fpp', '--f_post_process', default=False, help='Post-processing with flipped input')
parser.add_argument('-mspp', '--ms_post_process', default=True, help='Post-processing with multi-scale input')
parser.add_argument('-median', '--median', default=False,
help='use median scaling (not needed when training from stereo')
def display_config(save_path):
settings = ''
settings = settings + '############################################################\n'
settings = settings + '# FAL-net - Pytorch implementation #\n'
settings = settings + '# by Juan Luis Gonzalez juanluisgb@kaist.ac.kr #\n'
settings = settings + '############################################################\n'
settings = settings + '-------YOUR TRAINING SETTINGS---------\n'
for arg in vars(args):
settings = settings + "%15s: %s\n" % (str(arg), str(getattr(args, arg)))
print(settings)
# Save config in txt file
with open(os.path.join(save_path, 'settings.txt'), 'w+') as f:
f.write(settings)
def main():
print('-------Testing on gpu ' + args.gpu_no + '-------')
save_path = os.path.join('Test_Results', args.tdataName, args.model, args.time_stamp)
if args.f_post_process:
save_path = save_path + 'fpp'
if args.ms_post_process:
save_path = save_path + 'mspp'
print('=> Saving to {}'.format(save_path))
if not os.path.exists(save_path):
os.makedirs(save_path)
display_config(save_path)
input_transform = transforms.Compose([
data_transforms.ArrayToTensor(),
transforms.Normalize(mean=[0, 0, 0], std=[255, 255, 255]), # (input - mean) / std
transforms.Normalize(mean=[0.411, 0.432, 0.45], std=[1, 1, 1])
])
target_transform = transforms.Compose([
data_transforms.ArrayToTensor(),
transforms.Normalize(mean=[0], std=[1]),
])
# Torch Data Set List
input_path = os.path.join(args.data, args.tdataName)
[test_dataset, _] = Datasets.__dict__[args.tdataName](split=1, # all to be tested
root=input_path,
disp=True,
shuffle_test=False,
transform=input_transform,
target_transform=target_transform)
# Torch Data Loader
args.batch_size = 1 # kitty mixes image sizes!
args.sparse = True # disparities are sparse (from lidar)
val_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.workers,
pin_memory=False, shuffle=False)
# create pan model
model_dir = os.path.join(args.dataset, args.time_stamp, args.model + args.details)
pan_network_data = torch.load(model_dir)
pan_model = pan_network_data['m_model']
print("=> using pre-trained model for pan '{}'".format(pan_model))
pan_model = models.__dict__[pan_model](pan_network_data, no_levels=args.no_levels).cuda()
pan_model = torch.nn.DataParallel(pan_model, device_ids=[0]).cuda()
pan_model.eval()
model_parameters = utils.get_n_params(pan_model)
print("=> Number of parameters '{}'".format(model_parameters))
cudnn.benchmark = True
# evaluate on validation set
validate(val_loader, pan_model, save_path, model_parameters)
def validate(val_loader, pan_model, save_path, model_param):
global args
batch_time = utils.AverageMeter()
EPEs = utils.AverageMeter()
kitti_erros = utils.multiAverageMeter(utils.kitti_error_names)
l_disp_path = os.path.join(save_path, 'l_disp')
if not os.path.exists(l_disp_path):
os.makedirs(l_disp_path)
input_path = os.path.join(save_path, 'Input im')
if not os.path.exists(input_path):
os.makedirs(input_path)
pan_path = os.path.join(save_path, 'Pan')
if not os.path.exists(pan_path):
os.makedirs(pan_path)
pc_path = os.path.join(save_path, 'Point_cloud')
if not os.path.exists(pc_path):
os.makedirs(pc_path)
feats_path = os.path.join(save_path, 'feats')
if not os.path.exists(feats_path):
os.makedirs(feats_path)
# Set the max disp
right_shift = args.max_disp * args.rel_baselne
with torch.no_grad():
for i, (input, target, f_name) in enumerate(val_loader):
target = target[0].cuda()
input_left = input[0].cuda()
input_right = input[1].cuda()
if args.tdataName == 'Owndata':
B, C, H, W = input_left.shape
input_left = input_left[:,:,0:int(0.95*H),:]
# input_left = F.interpolate(input_left, scale_factor=1.0, mode='bilinear', align_corners=True)
B, C, H, W = input_left.shape
# Prepare flip grid for post-processing
i_tetha = torch.zeros(B, 2, 3).cuda()
i_tetha[:, 0, 0] = 1
i_tetha[:, 1, 1] = 1
flip_grid = F.affine_grid(i_tetha, [B, C, H, W])
flip_grid[:, :, :, 0] = -flip_grid[:, :, :, 0]
# Convert min and max disp to bx1x1 tensors
max_disp = torch.Tensor([right_shift]).unsqueeze(1).unsqueeze(1).type(input_left.type())
min_disp = max_disp * args.min_disp / args.max_disp
# Synthesis
end = time.time()
# Get disp
if args.save_pan:
pan_im, disp, maskL, maskRL, dispr = pan_model(input_left, min_disp, max_disp,
ret_disp=True, ret_subocc=True, ret_pan=True)
# You can append any feature map to feats, and they will be printed as 1 channel grayscale images
feats = [maskL, maskRL]
feats = [local_normalization(input_left), dispr / 100, maskL, maskRL]
else:
disp = pan_model(input_left, min_disp, max_disp, ret_disp=True, ret_subocc=False, ret_pan=False)
feats = None
if args.f_post_process:
flip_disp = pan_model(F.grid_sample(input_left, flip_grid), min_disp, max_disp,
ret_disp=True, ret_pan=False, ret_subocc=False)
flip_disp = F.grid_sample(flip_disp, flip_grid)
disp = (disp + flip_disp) / 2
elif args.ms_post_process:
disp = ms_pp(input_left, pan_model, flip_grid, disp, min_disp, max_disp)
# measure elapsed time
batch_time.update(time.time() - end, 1)
# Save outputs to disk
if args.save:
# Save monocular lr
disparity = disp.squeeze().cpu().numpy()
disparity = 256 * np.clip(disparity / (np.percentile(disparity, 95) + 1e-6), 0, 1)
plt.imsave(os.path.join(l_disp_path, '{:010d}.png'.format(i)), np.rint(disparity).astype(np.int32),
cmap='plasma', vmin=0, vmax=256)
if args.save_pc:
# equalize tone
m_rgb = torch.ones((B, C, 1, 1)).cuda()
m_rgb[:, 0, :, :] = 0.411 * m_rgb[:, 0, :, :]
m_rgb[:, 1, :, :] = 0.432 * m_rgb[:, 1, :, :]
m_rgb[:, 2, :, :] = 0.45 * m_rgb[:, 2, :, :]
point_cloud = utils.get_point_cloud((input_left + m_rgb) * 255, disp)
utils.save_point_cloud(point_cloud.squeeze(0).cpu().numpy(),
os.path.join(pc_path, '{:010d}.ply'.format(i)))
if args.save_input:
denormalize = np.array([0.411, 0.432, 0.45])
denormalize = denormalize[:, np.newaxis, np.newaxis]
p_im = input_left.squeeze().cpu().numpy() + denormalize
im = Image.fromarray(np.rint(255 * p_im.transpose(1, 2, 0)).astype(np.uint8))
im.save(os.path.join(input_path, '{:010d}.png'.format(i)))
if args.save_pan:
# save synthetic image
denormalize = np.array([0.411, 0.432, 0.45])
denormalize = denormalize[:, np.newaxis, np.newaxis]
im = pan_im.squeeze().cpu().numpy() + denormalize
im = Image.fromarray(np.rint(255 * im.transpose(1, 2, 0)).astype(np.uint8))
im.save(os.path.join(pan_path, '{:010d}.png'.format(i)))
# save features per channel as grayscale images
if feats is not None:
for layer in range(len(feats)):
_, nc, _, _ = feats[layer].shape
for inc in range(nc):
mean = torch.abs(feats[layer][:, inc, :, :]).mean()
feature = 255 * torch.abs(feats[layer][:, inc, :, :]).squeeze().cpu().numpy()
feature[feature < 0] = 0
feature[feature > 255] = 255
imsave(os.path.join(feats_path, '{:010d}_l{}_c{}.png'.format(i, layer, inc)),
np.rint(feature).astype(np.uint8))
if args.evaluate:
# Record kitti metrics
target_disp = target.squeeze(1).cpu().numpy()
pred_disp = disp.squeeze(1).cpu().numpy()
if args.tdataName == 'Kitti_eigen_test_improved' or \
args.tdataName == 'Kitti_eigen_test_original':
target_depth, pred_depth = utils.disps_to_depths_kitti(target_disp, pred_disp)
kitti_erros.update(
utils.compute_kitti_errors(target_depth[0], pred_depth[0], use_median=args.median),
target.size(0))
if args.tdataName == 'Kitti2015':
EPE = realEPE(disp, target, sparse=True)
EPEs.update(EPE.detach(), target.size(0))
target_depth, pred_depth = utils.disps_to_depths_kitti2015(target_disp, pred_disp)
kitti_erros.update(utils.compute_kitti_errors(target_depth[0], pred_depth[0], use_median=args.median),
target.size(0))
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t Time {2}\t a1 {3:.4f}'.format(i, len(val_loader), batch_time,
kitti_erros.avg[4]))
# Save erros and number of parameters in txt file
with open(os.path.join(save_path, 'errors.txt'), 'w+') as f:
f.write('\nNumber of parameters {}\n'.format(model_param))
f.write('\nEPE {}\n'.format(EPEs.avg))
f.write('\nKitti metrics: \n{}\n'.format(kitti_erros))
if args.evaluate:
print('* EPE: {0}'.format(EPEs.avg))
print(kitti_erros)
def ms_pp(input_view, pan_model, flip_grid, disp, min_disp, max_pix):
B, C, H, W = input_view.shape
up_fac = 2/3
upscaled = F.interpolate(F.grid_sample(input_view, flip_grid), scale_factor=up_fac, mode='bilinear',
align_corners=True)
dwn_flip_disp = pan_model(upscaled, min_disp, max_pix, ret_disp=True, ret_pan=False, ret_subocc=False)
dwn_flip_disp = (1 / up_fac) * F.interpolate(dwn_flip_disp, size=(H, W), mode='nearest')#, align_corners=True)
dwn_flip_disp = F.grid_sample(dwn_flip_disp, flip_grid)
norm = disp / (np.percentile(disp.detach().cpu().numpy(), 95) + 1e-6)
norm[norm > 1] = 1
return (1 - norm) * disp + norm * dwn_flip_disp
def local_normalization(img, win=3):
B,C,H,W = img.shape
mean = [0.411, 0.432, 0.45]
m_rgb = torch.ones((B, C, 1, 1)).type(img.type())
m_rgb[:, 0, :, :] = mean[0] * m_rgb[:, 0, :, :]
m_rgb[:, 1, :, :] = mean[1] * m_rgb[:, 1, :, :]
m_rgb[:, 2, :, :] = mean[2] * m_rgb[:, 2, :, :]
img = img + m_rgb
img = img.cpu()
# Get mean and normalize
win_mean_T = F.avg_pool2d(img, kernel_size=win, stride=1, padding=(win-1)//2) # B,C,H,W
win_std = F.avg_pool2d((img - win_mean_T)**2, kernel_size=win, stride=1, padding=(win-1)//2) ** (1/2)
win_norm_img = (img - win_mean_T) / (win_std + 0.0000001)
# win_norm_img = win_std
# padded_img = F.pad(img.clone(), [(win-1)//2, (win-1)//2, (win-1)//2, (win-1)//2], mode='reflect')
# for i in range(win):
# for j in range(win):
# if i == 0 and j == 0:
# img_ngb = padded_img[:,:,i:H + i, j:W + j].unsqueeze(1)
# else:
# img_ngb = torch.cat((img_ngb, padded_img[:, :, i:H + i, j:W + j].unsqueeze(1)), 1) # B,win**2,C,H,W
#
# # Reshape for matrix multiplications
# img_ngb = img_ngb.view((B, win**2, C, H * W))
# img_ngb = torch.transpose(torch.transpose(img_ngb, 1, 3), 2, 3)
# img_ngb = img_ngb.view((B * H * W, win**2, C))
#
# win_mean = win_mean_T.clone().view((B, C, H * W))
# win_mean = torch.transpose(win_mean, 1, 2)
# win_mean = win_mean.view((B * H * W, C)).unsqueeze(2)
#
# # Get inverse variance matrix
# # win_var=inv(winI'*winI/neb_size-win_mu*win_mu' +epsilon/neb_size*eye(c));
# eye = torch.eye(win).type(img_ngb.type())
# eye = eye.reshape((1, win, win))
# eye = eye.repeat(B, 1, 1)
# eps = 0.000001 / (win**2)
# win_var_inv = torch.inverse(img_ngb.transpose(1,2).bmm(img_ngb) / (win**2) - win_mean.bmm(win_mean.transpose(1,2))
# + eps * eye) #3x3 matrices
#
# # Remove the mean and multiply by variance
# win_norm_img = win_norm_img.view((B, C, H * W))
# win_norm_img = torch.transpose(win_norm_img, 1, 2)
# win_norm_img = win_norm_img.view((B * H * W, C)).unsqueeze(1)
# win_norm_img = win_norm_img.bmm(win_var_inv).squeeze(1) # B*H*W, C, 1
#
# # Reshape in B,C,H,W format
# win_norm_img = win_norm_img.view((B, H * W, C)).transpose(1, 2)
# win_norm_img = win_norm_img.view((B, C, H, W))
return win_norm_img
if __name__ == '__main__':
import os
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_no
import torch
import torch.utils.data
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torch.nn.functional as F
# Usefull tensorboard call
# tensorboard --logdir=C:ProjectDir/NeurIPS2020_FAL_net/Kitti --port=6012
import myUtils as utils
import data_transforms
from loss_functions import realEPE
args = parser.parse_args()
main()