-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathoptimizer.py
782 lines (666 loc) · 36.4 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import contextlib
from dust3r.cloud_opt.base_opt import BasePCOptimizer, edge_str
from dust3r.cloud_opt.pair_viewer import PairViewer
from dust3r.utils.geometry import xy_grid, geotrf, depthmap_to_pts3d
from dust3r.utils.device import to_cpu, to_numpy
from dust3r.utils.goem_opt import DepthBasedWarping, OccMask, WarpImage, depth_regularization_si_weighted, tum_to_pose_matrix
from third_party.raft import load_RAFT
from sam2.build_sam import build_sam2_video_predictor
sam2_checkpoint = "third_party/sam2/checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
def smooth_L1_loss_fn(estimate, gt, mask, beta=1.0, per_pixel_thre=50.):
loss_raw_shape = F.smooth_l1_loss(estimate*mask, gt*mask, beta=beta, reduction='none')
if per_pixel_thre > 0:
per_pixel_mask = (loss_raw_shape < per_pixel_thre) * mask
else:
per_pixel_mask = mask
return torch.sum(loss_raw_shape * per_pixel_mask) / torch.sum(per_pixel_mask)
def mse_loss_fn(estimate, gt, mask):
v = torch.sum((estimate*mask-gt*mask)**2) / torch.sum(mask)
return v # , v.item()
class PointCloudOptimizer(BasePCOptimizer):
""" Optimize a global scene, given a list of pairwise observations.
Graph node: images
Graph edges: observations = (pred1, pred2)
"""
def __init__(self, *args, optimize_pp=False, focal_break=20, shared_focal=False, flow_loss_fn='smooth_l1', flow_loss_weight=0.0,
depth_regularize_weight=0.0, num_total_iter=300, temporal_smoothing_weight=0, translation_weight=0.1, flow_loss_start_epoch=0.15, flow_loss_thre=50,
sintel_ckpt=False, use_self_mask=False, pxl_thre=50, sam2_mask_refine=True, motion_mask_thre=0.35, batchify=True, **kwargs):
super().__init__(*args, **kwargs)
self.has_im_poses = True # by definition of this class
self.focal_break = focal_break
self.num_total_iter = num_total_iter
self.temporal_smoothing_weight = temporal_smoothing_weight
self.translation_weight = translation_weight
self.flow_loss_flag = False
self.flow_loss_start_epoch = flow_loss_start_epoch
self.flow_loss_thre = flow_loss_thre
self.optimize_pp = optimize_pp
self.pxl_thre = pxl_thre
self.motion_mask_thre = motion_mask_thre
self.batchify = batchify
# adding thing to optimize
self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth)
self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses
self.shared_focal = shared_focal
if self.shared_focal:
self.im_focals = nn.ParameterList(torch.FloatTensor(
[self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes[:1]) # camera intrinsics
else:
self.im_focals = nn.ParameterList(torch.FloatTensor(
[self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics
self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics
self.im_pp.requires_grad_(optimize_pp)
self.imshape = self.imshapes[0]
im_areas = [h*w for h, w in self.imshapes]
self.max_area = max(im_areas)
# adding thing to optimize
if self.batchify:
self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) #(num_imgs, H*W)
self.im_poses = ParameterStack(self.im_poses, is_param=True)
self.im_focals = ParameterStack(self.im_focals, is_param=True)
self.im_pp = ParameterStack(self.im_pp, is_param=True)
self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes]))
self.register_buffer('_grid', ParameterStack(
[xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area))
# pre-compute pixel weights
self.register_buffer('_weight_i', ParameterStack(
[self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area))
self.register_buffer('_weight_j', ParameterStack(
[self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area))
# precompute aa
self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area))
self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area))
self.register_buffer('_ei', torch.tensor([i for i, j in self.edges]))
self.register_buffer('_ej', torch.tensor([j for i, j in self.edges]))
self.total_area_i = sum([im_areas[i] for i, j in self.edges])
self.total_area_j = sum([im_areas[j] for i, j in self.edges])
self.depth_wrapper = DepthBasedWarping()
self.backward_warper = WarpImage()
self.depth_regularizer = depth_regularization_si_weighted
if flow_loss_fn == 'smooth_l1':
self.flow_loss_fn = smooth_L1_loss_fn
elif flow_loss_fn == 'mse':
self.low_loss_fn = mse_loss_fn
self.flow_loss_weight = flow_loss_weight
self.depth_regularize_weight = depth_regularize_weight
if self.flow_loss_weight > 0:
self.flow_ij, self.flow_ji, self.flow_valid_mask_i, self.flow_valid_mask_j = self.get_flow(sintel_ckpt) # (num_pairs, 2, H, W)
if use_self_mask: self.get_motion_mask_from_pairs(*args)
# turn off the gradient for the flow
self.flow_ij.requires_grad_(False)
self.flow_ji.requires_grad_(False)
self.flow_valid_mask_i.requires_grad_(False)
self.flow_valid_mask_j.requires_grad_(False)
if sam2_mask_refine:
with torch.no_grad():
self.refine_motion_mask_w_sam2()
else:
self.sam2_dynamic_masks = None
def get_flow(self, sintel_ckpt=False): #TODO: test with gt flow
print('precomputing flow...')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
get_valid_flow_mask = OccMask(th=3.0)
pair_imgs = [np.stack(self.imgs)[self._ei], np.stack(self.imgs)[self._ej]]
flow_net = load_RAFT() if sintel_ckpt else load_RAFT("third_party/RAFT/models/Tartan-C-T-TSKH-spring540x960-M.pth")
flow_net = flow_net.to(device)
flow_net.eval()
with torch.no_grad():
chunk_size = 12
flow_ij = []
flow_ji = []
num_pairs = len(pair_imgs[0])
for i in tqdm(range(0, num_pairs, chunk_size)):
end_idx = min(i + chunk_size, num_pairs)
imgs_ij = [torch.tensor(pair_imgs[0][i:end_idx]).float().to(device),
torch.tensor(pair_imgs[1][i:end_idx]).float().to(device)]
flow_ij.append(flow_net(imgs_ij[0].permute(0, 3, 1, 2) * 255,
imgs_ij[1].permute(0, 3, 1, 2) * 255,
iters=20, test_mode=True)[1])
flow_ji.append(flow_net(imgs_ij[1].permute(0, 3, 1, 2) * 255,
imgs_ij[0].permute(0, 3, 1, 2) * 255,
iters=20, test_mode=True)[1])
flow_ij = torch.cat(flow_ij, dim=0)
flow_ji = torch.cat(flow_ji, dim=0)
valid_mask_i = get_valid_flow_mask(flow_ij, flow_ji)
valid_mask_j = get_valid_flow_mask(flow_ji, flow_ij)
print('flow precomputed')
# delete the flow net
if flow_net is not None: del flow_net
return flow_ij, flow_ji, valid_mask_i, valid_mask_j
def get_motion_mask_from_pairs(self, view1, view2, pred1, pred2):
assert self.is_symmetrized, 'only support symmetric case'
symmetry_pairs_idx = [(i, i+len(self.edges)//2) for i in range(len(self.edges)//2)]
intrinsics_i = []
intrinsics_j = []
R_i = []
R_j = []
T_i = []
T_j = []
depth_maps_i = []
depth_maps_j = []
for i, j in tqdm(symmetry_pairs_idx):
new_view1 = {}
new_view2 = {}
for key in view1.keys():
if isinstance(view1[key], list):
new_view1[key] = [view1[key][i], view1[key][j]]
new_view2[key] = [view2[key][i], view2[key][j]]
elif isinstance(view1[key], torch.Tensor):
new_view1[key] = torch.stack([view1[key][i], view1[key][j]])
new_view2[key] = torch.stack([view2[key][i], view2[key][j]])
new_view1['idx'] = [0, 1]
new_view2['idx'] = [1, 0]
new_pred1 = {}
new_pred2 = {}
for key in pred1.keys():
if isinstance(pred1[key], list):
new_pred1[key] = [pred1[key][i], pred1[key][j]]
elif isinstance(pred1[key], torch.Tensor):
new_pred1[key] = torch.stack([pred1[key][i], pred1[key][j]])
for key in pred2.keys():
if isinstance(pred2[key], list):
new_pred2[key] = [pred2[key][i], pred2[key][j]]
elif isinstance(pred2[key], torch.Tensor):
new_pred2[key] = torch.stack([pred2[key][i], pred2[key][j]])
pair_viewer = PairViewer(new_view1, new_view2, new_pred1, new_pred2, verbose=False)
intrinsics_i.append(pair_viewer.get_intrinsics()[0])
intrinsics_j.append(pair_viewer.get_intrinsics()[1])
R_i.append(pair_viewer.get_im_poses()[0][:3, :3])
R_j.append(pair_viewer.get_im_poses()[1][:3, :3])
T_i.append(pair_viewer.get_im_poses()[0][:3, 3:])
T_j.append(pair_viewer.get_im_poses()[1][:3, 3:])
depth_maps_i.append(pair_viewer.get_depthmaps()[0])
depth_maps_j.append(pair_viewer.get_depthmaps()[1])
self.intrinsics_i = torch.stack(intrinsics_i).to(self.flow_ij.device)
self.intrinsics_j = torch.stack(intrinsics_j).to(self.flow_ij.device)
self.R_i = torch.stack(R_i).to(self.flow_ij.device)
self.R_j = torch.stack(R_j).to(self.flow_ij.device)
self.T_i = torch.stack(T_i).to(self.flow_ij.device)
self.T_j = torch.stack(T_j).to(self.flow_ij.device)
self.depth_maps_i = torch.stack(depth_maps_i).unsqueeze(1).to(self.flow_ij.device)
self.depth_maps_j = torch.stack(depth_maps_j).unsqueeze(1).to(self.flow_ij.device)
ego_flow_1_2, _ = self.depth_wrapper(self.R_i, self.T_i, self.R_j, self.T_j, 1 / (self.depth_maps_i + 1e-6), self.intrinsics_j, torch.linalg.inv(self.intrinsics_i))
ego_flow_2_1, _ = self.depth_wrapper(self.R_j, self.T_j, self.R_i, self.T_i, 1 / (self.depth_maps_j + 1e-6), self.intrinsics_i, torch.linalg.inv(self.intrinsics_j))
err_map_i = torch.norm(ego_flow_1_2[:, :2, ...] - self.flow_ij[:len(symmetry_pairs_idx)], dim=1)
err_map_j = torch.norm(ego_flow_2_1[:, :2, ...] - self.flow_ji[:len(symmetry_pairs_idx)], dim=1)
# normalize the error map for each pair
err_map_i = (err_map_i - err_map_i.amin(dim=(1, 2), keepdim=True)) / (err_map_i.amax(dim=(1, 2), keepdim=True) - err_map_i.amin(dim=(1, 2), keepdim=True))
err_map_j = (err_map_j - err_map_j.amin(dim=(1, 2), keepdim=True)) / (err_map_j.amax(dim=(1, 2), keepdim=True) - err_map_j.amin(dim=(1, 2), keepdim=True))
self.dynamic_masks = [[] for _ in range(self.n_imgs)]
for i, j in symmetry_pairs_idx:
i_idx = self._ei[i]
j_idx = self._ej[i]
self.dynamic_masks[i_idx].append(err_map_i[i])
self.dynamic_masks[j_idx].append(err_map_j[i])
for i in range(self.n_imgs):
self.dynamic_masks[i] = torch.stack(self.dynamic_masks[i]).mean(dim=0) > self.motion_mask_thre
def refine_motion_mask_w_sam2(self):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Save previous TF32 settings
if device == 'cuda':
prev_allow_tf32 = torch.backends.cuda.matmul.allow_tf32
prev_allow_cudnn_tf32 = torch.backends.cudnn.allow_tf32
# Enable TF32 for Ampere GPUs
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
try:
autocast_dtype = torch.bfloat16 if device == 'cuda' else torch.float32
with torch.autocast(device_type=device, dtype=autocast_dtype):
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device)
frame_tensors = torch.from_numpy(np.array((self.imgs))).permute(0, 3, 1, 2).to(device)
inference_state = predictor.init_state(video_path=frame_tensors)
mask_list = [self.dynamic_masks[i] for i in range(self.n_imgs)]
ann_obj_id = 1
self.sam2_dynamic_masks = [[] for _ in range(self.n_imgs)]
# Process even frames
predictor.reset_state(inference_state)
for idx, mask in enumerate(mask_list):
if idx % 2 == 1:
_, out_obj_ids, out_mask_logits = predictor.add_new_mask(
inference_state,
frame_idx=idx,
obj_id=ann_obj_id,
mask=mask,
)
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
for out_frame_idx in range(self.n_imgs):
if out_frame_idx % 2 == 0:
self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id]
# Process odd frames
predictor.reset_state(inference_state)
for idx, mask in enumerate(mask_list):
if idx % 2 == 0:
_, out_obj_ids, out_mask_logits = predictor.add_new_mask(
inference_state,
frame_idx=idx,
obj_id=ann_obj_id,
mask=mask,
)
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
for out_frame_idx in range(self.n_imgs):
if out_frame_idx % 2 == 1:
self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id]
# Update dynamic masks
for i in range(self.n_imgs):
self.sam2_dynamic_masks[i] = torch.from_numpy(self.sam2_dynamic_masks[i][0]).to(device)
self.dynamic_masks[i] = self.dynamic_masks[i].to(device)
self.dynamic_masks[i] = self.dynamic_masks[i] | self.sam2_dynamic_masks[i]
# Clean up
del predictor
finally:
# Restore previous TF32 settings
if device == 'cuda':
torch.backends.cuda.matmul.allow_tf32 = prev_allow_tf32
torch.backends.cudnn.allow_tf32 = prev_allow_cudnn_tf32
def _check_all_imgs_are_selected(self, msk):
self.msk = torch.from_numpy(np.array(msk, dtype=bool)).to(self.device)
assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!'
pass
def preset_pose(self, known_poses, pose_msk=None, requires_grad=False): # cam-to-world
self._check_all_imgs_are_selected(pose_msk)
if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
known_poses = [known_poses]
if known_poses.shape[-1] == 7: # xyz wxyz
known_poses = [tum_to_pose_matrix(pose) for pose in known_poses]
for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
if self.verbose:
print(f' (setting pose #{idx} = {pose[:3,3]})')
self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))
# normalize scale if there's less than 1 known pose
n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
self.norm_pw_scale = (n_known_poses <= 1)
if len(known_poses) == self.n_imgs:
if requires_grad:
self.im_poses.requires_grad_(True)
else:
self.im_poses.requires_grad_(False)
self.norm_pw_scale = False
def preset_intrinsics(self, known_intrinsics, msk=None):
if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2:
known_intrinsics = [known_intrinsics]
for K in known_intrinsics:
assert K.shape == (3, 3)
self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk)
if self.optimize_pp:
self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk)
def preset_focal(self, known_focals, msk=None, requires_grad=False):
self._check_all_imgs_are_selected(msk)
for idx, focal in zip(self._get_msk_indices(msk), known_focals):
if self.verbose:
print(f' (setting focal #{idx} = {focal})')
self._no_grad(self._set_focal(idx, focal))
if len(known_focals) == self.n_imgs:
if requires_grad:
self.im_focals.requires_grad_(True)
else:
self.im_focals.requires_grad_(False)
def preset_principal_point(self, known_pp, msk=None):
self._check_all_imgs_are_selected(msk)
for idx, pp in zip(self._get_msk_indices(msk), known_pp):
if self.verbose:
print(f' (setting principal point #{idx} = {pp})')
self._no_grad(self._set_principal_point(idx, pp))
self.im_pp.requires_grad_(False)
def _get_msk_indices(self, msk):
if msk is None:
return range(self.n_imgs)
elif isinstance(msk, int):
return [msk]
elif isinstance(msk, (tuple, list)):
return self._get_msk_indices(np.array(msk))
elif msk.dtype in (bool, torch.bool, np.bool_):
assert len(msk) == self.n_imgs
return np.where(msk)[0]
elif np.issubdtype(msk.dtype, np.integer):
return msk
else:
raise ValueError(f'bad {msk=}')
def _no_grad(self, tensor):
assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs'
def _set_focal(self, idx, focal, force=False):
param = self.im_focals[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = self.focal_break * np.log(focal)
return param
def get_focals(self):
if self.shared_focal:
log_focals = torch.stack([self.im_focals[0]] * self.n_imgs, dim=0)
else:
log_focals = torch.stack(list(self.im_focals), dim=0)
return (log_focals / self.focal_break).exp()
def get_known_focal_mask(self):
return torch.tensor([not (p.requires_grad) for p in self.im_focals])
def _set_principal_point(self, idx, pp, force=False):
param = self.im_pp[idx]
H, W = self.imshapes[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
return param
def get_principal_points_non_batch(self):
return torch.stack([pp.new((W/2, H/2))+10*pp for pp, (H, W) in zip(self.im_pp, self.imshapes)])
def get_principal_points_batch(self):
return self._pp + 10 * self.im_pp
def get_principal_points(self):
if self.batchify:
return self.get_principal_points_batch()
else:
return self.get_principal_points_non_batch()
def get_intrinsics(self):
K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
focals = self.get_focals().flatten()
K[:, 0, 0] = K[:, 1, 1] = focals
K[:, :2, 2] = self.get_principal_points()
K[:, 2, 2] = 1
return K
def get_im_poses_batch(self): # cam to world
cam2world = self._get_poses(self.im_poses)
return cam2world
def get_im_poses_non_batch(self): # cam to world
cam2world = self._get_poses(torch.stack(list(self.im_poses)))
return cam2world
def get_im_poses(self):
if self.batchify:
return self.get_im_poses_batch()
else:
return self.get_im_poses_non_batch()
def _set_depthmap_batch(self, idx, depth, force=False):
depth = _ravel_hw(depth, self.max_area)
param = self.im_depthmaps[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = depth.log().nan_to_num(neginf=0)
return param
def _set_depthmap_non_batch(self, idx, depth, force=False):
param = self.im_depthmaps[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = depth.log().nan_to_num(neginf=0)
return param
def _set_depthmap(self, idx, depth, force=False):
if self.batchify:
return self._set_depthmap_batch(idx, depth, force)
else:
return self._set_depthmap_non_batch(idx, depth, force)
def preset_depthmap(self, known_depthmaps, msk=None, requires_grad=False):
self._check_all_imgs_are_selected(msk)
for idx, depth in zip(self._get_msk_indices(msk), known_depthmaps):
if self.verbose:
print(f' (setting depthmap #{idx})')
self._no_grad(self._set_depthmap(idx, depth))
if len(known_depthmaps) == self.n_imgs:
if requires_grad:
self.im_depthmaps.requires_grad_(True)
else:
self.im_depthmaps.requires_grad_(False)
def _set_init_depthmap(self):
depth_maps = self.get_depthmaps(raw=True)
self.init_depthmap = [dm.detach().clone() for dm in depth_maps]
def get_init_depthmaps(self, raw=False):
res = self.init_depthmap
if not raw:
res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
return res
def get_depthmaps_batch(self, raw=False):
res = self.im_depthmaps.exp()
if not raw:
res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
return res
def get_depthmaps_non_batch(self):
return [d.exp() for d in self.im_depthmaps]
def get_depthmaps(self, raw=False):
if self.batchify:
return self.get_depthmaps_batch(raw)
else:
return self.get_depthmaps_non_batch()
def depth_to_pts3d(self):
# Get depths and projection params if not provided
focals = self.get_focals()
pp = self.get_principal_points()
im_poses = self.get_im_poses()
depth = self.get_depthmaps(raw=True)
# get pointmaps in camera frame
rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp)
# project to world frame
return geotrf(im_poses, rel_ptmaps)
def depth_to_pts3d_partial(self):
# Get depths and projection params if not provided
focals = self.get_focals()
pp = self.get_principal_points()
im_poses = self.get_im_poses()
depth = self.get_depthmaps()
# convert focal to (1,2,H,W) constant field
def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i])
# get pointmaps in camera frame
rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])]
# project to world frame
return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)]
def get_pts3d_batch(self, raw=False, **kwargs):
res = self.depth_to_pts3d()
if not raw:
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
return res
def get_pts3d(self, raw=False, **kwargs):
if self.batchify:
return self.get_pts3d_batch(raw, **kwargs)
else:
return self.depth_to_pts3d_partial()
def forward_batchify(self, epoch=9999):
pw_poses = self.get_pw_poses() # cam-to-world
pw_adapt = self.get_adaptors().unsqueeze(1)
proj_pts3d = self.get_pts3d(raw=True)
# rotate pairwise prediction according to pw_poses
aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)
# compute the less
li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i
lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j
# camera temporal loss
if self.temporal_smoothing_weight > 0:
temporal_smoothing_loss = self.relative_pose_loss(self.get_im_poses()[:-1], self.get_im_poses()[1:]).sum()
else:
temporal_smoothing_loss = 0
if self.flow_loss_weight > 0 and epoch >= self.num_total_iter * self.flow_loss_start_epoch: # enable flow loss after certain epoch
R_all, T_all = self.get_im_poses()[:,:3].split([3, 1], dim=-1)
R1, T1 = R_all[self._ei], T_all[self._ei]
R2, T2 = R_all[self._ej], T_all[self._ej]
K_all = self.get_intrinsics()
inv_K_all = torch.linalg.inv(K_all)
K_1, inv_K_1 = K_all[self._ei], inv_K_all[self._ei]
K_2, inv_K_2 = K_all[self._ej], inv_K_all[self._ej]
depth_all = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1)
depth1, depth2 = depth_all[self._ei], depth_all[self._ej]
disp_1, disp_2 = 1 / (depth1 + 1e-6), 1 / (depth2 + 1e-6)
ego_flow_1_2, _ = self.depth_wrapper(R1, T1, R2, T2, disp_1, K_2, inv_K_1)
ego_flow_2_1, _ = self.depth_wrapper(R2, T2, R1, T1, disp_2, K_1, inv_K_2)
dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1)
dynamic_mask1, dynamic_mask2 = dynamic_masks_all[self._ei], dynamic_masks_all[self._ej]
flow_loss_i = self.flow_loss_fn(ego_flow_1_2[:, :2, ...], self.flow_ij, ~dynamic_mask1, per_pixel_thre=self.pxl_thre)
flow_loss_j = self.flow_loss_fn(ego_flow_2_1[:, :2, ...], self.flow_ji, ~dynamic_mask2, per_pixel_thre=self.pxl_thre)
flow_loss = flow_loss_i + flow_loss_j
print(f'flow loss: {flow_loss.item()}')
if flow_loss.item() > self.flow_loss_thre and self.flow_loss_thre > 0:
flow_loss = 0
self.flow_loss_flag = True
else:
flow_loss = 0
if self.depth_regularize_weight > 0:
init_depthmaps = torch.stack(self.get_init_depthmaps(raw=False)).unsqueeze(1)
depthmaps = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1)
dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1)
depth_prior_loss = self.depth_regularizer(depthmaps, init_depthmaps, dynamic_masks_all)
else:
depth_prior_loss = 0
loss = (li + lj) * 1 + self.temporal_smoothing_weight * temporal_smoothing_loss + \
self.flow_loss_weight * flow_loss + self.depth_regularize_weight * depth_prior_loss
return loss
def forward_non_batchify(self, epoch=9999):
# --(1) Perform the original pairwise 3D consistency loss (pairwise 3D consistency)--
pw_poses = self.get_pw_poses() # pair-wise poses (or adaptive poses)
pw_adapt = self.get_adaptors()
proj_pts3d = self.get_pts3d() # 3D point clouds for each image
weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()}
weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()}
loss = 0.0
for e, (i, j) in enumerate(self.edges):
i_j = edge_str(i, j)
# Transform the pairwise predictions to the world coordinate system
aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j])
aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j])
# Compute the distance loss between the projected point clouds and the predictions
li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean()
lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean()
loss += (li + lj)
# Average the loss
loss /= self.n_edges
# --(2) Add temporal smoothing constraint between adjacent frames (temporal smoothing)--
temporal_smoothing_loss = 0.0
if self.temporal_smoothing_weight > 0:
# Get the global poses (4x4) for all images
im_poses = self.get_im_poses() # shape: (n_imgs, 4, 4)
# Stack the relative poses between adjacent frames and use the existing relative_pose_loss function
rel_RT1, rel_RT2 = [], []
for idx in range(self.n_imgs - 1):
rel_RT1.append(im_poses[idx])
rel_RT2.append(im_poses[idx + 1])
if len(rel_RT1) > 0:
rel_RT1 = torch.stack(rel_RT1, dim=0) # shape: (n_imgs-1, 4, 4)
rel_RT2 = torch.stack(rel_RT2, dim=0)
# Compute the pose difference between adjacent frames
temporal_smoothing_loss = self.relative_pose_loss(rel_RT1, rel_RT2).sum()
loss += self.temporal_smoothing_weight * temporal_smoothing_loss
# --(3) Add flow constraint (flow_loss), similar to forward_batchify--
flow_loss = 0.0
if self.flow_loss_weight > 0 and epoch >= self.num_total_iter * self.flow_loss_start_epoch:
# Iterate through each pair of images and compute the depth map and flow comparison
im_poses = self.get_im_poses() # (n_imgs, 4, 4)
K_all = self.get_intrinsics() # (n_imgs, 3, 3)
inv_K_all = torch.linalg.inv(K_all)
depthmaps = self.get_depthmaps(raw=False) # list of depth maps (H, W)
for e, (i, j) in enumerate(self.edges):
# Get the rotation, translation, and intrinsics for the two frames
R1 = im_poses[i][:3, :3].unsqueeze(0) # shape: (1, 3, 3)
T1 = im_poses[i][:3, 3].unsqueeze(-1).unsqueeze(0) # (1, 3, 1)
R2 = im_poses[j][:3, :3].unsqueeze(0)
T2 = im_poses[j][:3, 3].unsqueeze(-1).unsqueeze(0)
K1 = K_all[i].unsqueeze(0) # (1, 3, 3)
K2 = K_all[j].unsqueeze(0)
inv_K1 = inv_K_all[i].unsqueeze(0)
inv_K2 = inv_K_all[j].unsqueeze(0)
# Construct disparity: disp = 1/depth
depth1 = depthmaps[i].unsqueeze(0).unsqueeze(1) # (1, 1, H, W)
depth2 = depthmaps[j].unsqueeze(0).unsqueeze(1)
disp_1 = 1.0 / (depth1 + 1e-6)
disp_2 = 1.0 / (depth2 + 1e-6)
# Compute "ego-motion flow" by projecting using DepthBasedWarping
# Note that DepthBasedWarping expects batch dimension, so add unsqueeze(0)
ego_flow_1_2, _ = self.depth_wrapper(R1, T1, R2, T2, disp_1, K2, inv_K1)
ego_flow_2_1, _ = self.depth_wrapper(R2, T2, R1, T1, disp_2, K1, inv_K2)
# Get the corresponding dynamic region masks (if any)
dynamic_mask_i = self.dynamic_masks[i] # shape: (H, W)
dynamic_mask_j = self.dynamic_masks[j]
# When computing flow loss, exclude or ignore dynamic regions
flow_loss_i = self.flow_loss_fn(
ego_flow_1_2[0, :2, ...], # shape: (2, H, W)
self.flow_ij[e], # shape: (2, H, W), i->j
~dynamic_mask_i, # mask: True = keep, False = ignore
per_pixel_thre=self.pxl_thre
)
flow_loss_j = self.flow_loss_fn(
ego_flow_2_1[0, :2, ...],
self.flow_ji[e], # j->i
~dynamic_mask_j,
per_pixel_thre=self.pxl_thre
)
flow_loss += (flow_loss_i + flow_loss_j)
# Optional: handle cases where the flow loss is too large (e.g., early stop)
# divide by the number of edges
flow_loss /= self.n_edges
print(f'flow loss: {flow_loss.item()}')
if flow_loss.item() > self.flow_loss_thre and self.flow_loss_thre > 0:
flow_loss = 0.0
loss += self.flow_loss_weight * flow_loss
# --(4) Add depth regularization (depth_prior_loss) to constrain the initial depth--
if self.depth_regularize_weight > 0:
init_depthmaps = self.get_init_depthmaps(raw=False) # initial depth maps
current_depthmaps = self.get_depthmaps(raw=False) # current optimized depth maps
depth_prior_loss = 0.0
for i in range(self.n_imgs):
# Apply constraints on static regions (ignore dynamic regions)
# Make sure the shape has the batch dimension (B,1,H,W)
depth_prior_loss += self.depth_regularizer(
current_depthmaps[i].unsqueeze(0).unsqueeze(1),
init_depthmaps[i].unsqueeze(0).unsqueeze(1),
self.dynamic_masks[i].unsqueeze(0).unsqueeze(1)
)
loss += self.depth_regularize_weight * depth_prior_loss
return loss
def forward(self, epoch=9999):
if self.batchify:
return self.forward_batchify(epoch)
else:
return self.forward_non_batchify(epoch)
def relative_pose_loss(self, RT1, RT2):
relative_RT = torch.matmul(torch.inverse(RT1), RT2)
rotation_diff = relative_RT[:, :3, :3]
translation_diff = relative_RT[:, :3, 3]
# Frobenius norm for rotation difference
rotation_loss = torch.norm(rotation_diff - (torch.eye(3, device=RT1.device)), dim=(1, 2))
# L2 norm for translation difference
translation_loss = torch.norm(translation_diff, dim=1)
# Combined loss (one can weigh these differently if needed)
pose_loss = rotation_loss + translation_loss * self.translation_weight
return pose_loss
def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
pp = pp.unsqueeze(1)
focal = focal.unsqueeze(1)
assert focal.shape == (len(depth), 1, 1)
assert pp.shape == (len(depth), 1, 2)
assert pixel_grid.shape == depth.shape + (2,)
depth = depth.unsqueeze(-1)
return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)
def ParameterStack(params, keys=None, is_param=None, fill=0):
if keys is not None:
params = [params[k] for k in keys]
if fill > 0:
params = [_ravel_hw(p, fill) for p in params]
requires_grad = params[0].requires_grad
assert all(p.requires_grad == requires_grad for p in params)
params = torch.stack(list(params)).float().detach()
if is_param or requires_grad:
params = nn.Parameter(params)
params.requires_grad_(requires_grad)
return params
def _ravel_hw(tensor, fill=0):
# ravel H,W
tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
if len(tensor) < fill:
tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:])))
return tensor
def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515
return minf*focal_base, maxf*focal_base
def apply_mask(img, msk):
img = img.copy()
img[msk] = 0
return img
def ordered_ratio(disp_a, disp_b, mask=None):
ratio_a = torch.maximum(disp_a, disp_b) / \
(torch.minimum(disp_a, disp_b)+1e-5)
if mask is not None:
ratio_a = ratio_a[mask]
return ratio_a - 1