Skip to content

Latest commit

 

History

History
93 lines (73 loc) · 4.18 KB

README.md

File metadata and controls

93 lines (73 loc) · 4.18 KB

English | 简体中文 | 🗃️项目开发报告

yaTuner

yaTuner: yet another auto tuner for compilers.

Getting Started

A virtual environment can be created using make init and examples are placed at directory examples.

To tune a program, use yatuner -g <filename> to generate a basic template for the program. Then modify the the script for further use. More information about the tuning script is contained in the template.

Also, yatuner.utils includes tools that might be necessary for use, here is a brief summary:

Tool Functionality
yatuner.utils.execute Execute command
yatuner.utils.fetch_perf_stat Get the result of perf stat of certain command
yatuner.utils.fetch_arch fetch the architecture of the machine
yatuner.utils.fetch_gcc_version fetch the gcc version
yatuner.utils.fetch_gcc_optimizers fetch the gcc optimizers
yatuner.utils.fetch_gcc_parameters fetch the gcc parameters
yatuner.utils.fetch_gcc_enabled_optimizers fetch the gcc enabled optimizers of given options
yatuner.utils.fetch_size fetch a file size

These tools can be used in the tuning script, see examples for details.

The tuning process and relative methods and their functionalities are listed as below.

Method Functionality
yatuner.Tuner.initialize Initialize workspace
yatuner.Tuner.test_run Doing an initial test run
yatuner.Tuner.hypotest_optimizers Hypothesis test for optimizers
yatuner.Tuner.hypotest_parameters Hypothesis test for parameters
yatuner.Tuner.optimize Tune parameters with Bayesian Optimization
yatuner.Tuner.optimize_linUCB Tune parameters with LinUCB
yatuner.Tuner.run Run final test and generate result
yatuner.Tuner.plot_data Plot result in violin graph

Detailed documentation of yatuner.Tuner and yatuner.utils can be found in docs.

Module Documentation
yatuner.Tuner docs/yatuner.tuner.md
yatuner.utils docs/yatuner.utils.md

Usage

  1. Install yaTuner.
  2. Auto-generate tuning script with yatuner -g <filename>.
  3. Manually modify tuning script and add details.
  4. Run tuning script with python <filename>.

Architecture

graph TB
subgraph User Interface
    O([yaTuner]) --> A
    A[(Auto-generated Tuning Script)] -- manually add details --> B[(Final Tuning Script)]
end
B == run ==> C
subgraph Tuning Process
    C(Auto-fetching compiler options) --> D(Hypothesis Test for Optimizers) 
    D --> E(Tuning Optimizers)
    E --> F(Hypothesis Test for Parameters)
    F --> G(Tuning Parameters)
    G -- run test and compare --> I[(Tuning Report)]
end
G -- store --> H[(Tuned Options)]
E -- store --> H
subgraph Tuner
    J([LinUCB Optimizer]) -.-> G
    K([Bayesian Optimizer]) -.-> G
    K -.-> E
end
subgraph Pre-defined Functions
    B == defines ==> L([comp])
    B == defines ==> M([run])
    B == defines ==> N([perf])
end
N -.-> J
L & M -.-> J & K
Loading

License

yaTuner is licensed under Mulan PSL v2. See LICENSE for more details.

About

This is a project for the OS competition 2022, proj105 problem, see this for further information.