Partitioned quasi-Newton profiles #78
Replies: 3 comments
-
Thanks @paraynaud. I have a few questions:
The final profile seems to point to PSR1 as the best method. But surely, if the size of elements is sufficiently large, that method will not even be viable. How many variables are in the element functions? How many element functions are there? Do they all have the same number of elements? Are some of them detected as convex? Do the "E" methods always use the (L)BFGS update on the convex elements? Your conclusions will be different if all elements have very few variables or if some are quite large. |
Beta Was this translation helpful? Give feedback.
-
Correct! Should I change the name? (perhaps "LBFGS_TR")
It is a PartiallySeparableNLPModel,
My mistake, it was not intentional, I corrected it.
PCS applies BFGS on convex elements and SR1 on not convex elements.
No, it is more about "SE", for Secant Equations.
I will produce a table (similar to this one) gathering info about the problems, including: the size, the number of elements, if it is convex or not and their type (linear, quadratic or general)
The set of partially-separable problems considers problems with small elements, in the sense that storing them with dense matrices is not an issue. |
Beta Was this translation helpful? Give feedback.
-
Here is the table (using PrettyTables) in both .md and .tex about the partially-separable problems considered.
\begin{table}
\begin{tabular}{rrrrrrrrrrrrrrrrrr}
\hline\hline
\textbf{name} & \textbf{n} & \textbf{N} & \textbf{M} & \textbf{constant} & \textbf{linear} & \textbf{quadratic} & \textbf{cubic} & \textbf{general} & \textbf{convex} & \textbf{concave} & \textbf{general} & \textbf{mininimal element dimension} & \textbf{mean element dimension} & \textbf{maximal element dimension} & \textbf{minimal elemental contribution (for 1 variables)} & \textbf{mean elemental contribution (for 1 variables)} & \textbf{maximal elemental contribution (for 1 variables)} \\\hline
arwhead5000 & 5000 & 9999 & 3 & 1 & 4999 & 0 & 0 & 4999 & 9999 & 5000 & 0 & 0 & 1.49985 & 2 & 2 & 2.9994 & 4999 \\
bdqrtic5000 & 5000 & 9992 & 2 & 0 & 0 & 4996 & 0 & 4996 & 9992 & 0 & 0 & 1 & 3.0 & 5 & 1 & 5.9952 & 4996 \\
brybnd5000 & 5000 & 5000 & 7 & 0 & 0 & 0 & 0 & 5000 & 0 & 0 & 5000 & 2 & 6.9968 & 7 & 2 & 6.9968 & 7 \\
chnrosnb5000 & 5000 & 9998 & 5000 & 0 & 0 & 4999 & 0 & 4999 & 4999 & 0 & 4999 & 1 & 1.5 & 2 & 1 & 2.9994 & 3 \\
clplatea5000 & 4900 & 19045 & 5 & 0 & 1 & 9522 & 0 & 9522 & 19045 & 1 & 0 & 1 & 1.9927 & 2 & 0 & 7.7451 & 8 \\
clplateb4900 & 4900 & 19114 & 5 & 0 & 70 & 9522 & 0 & 9522 & 19114 & 70 & 0 & 1 & 1.98912 & 2 & 0 & 7.75918 & 8 \\
clplatec4900 & 4900 & 19046 & 7 & 0 & 2 & 9522 & 0 & 9522 & 19046 & 2 & 0 & 1 & 1.99265 & 2 & 0 & 7.74531 & 8 \\
cragglvy4900 & 4900 & 12245 & 5 & 0 & 0 & 2449 & 0 & 9796 & 7347 & 0 & 4898 & 1 & 1.6 & 2 & 2 & 3.99837 & 4 \\
dixmaane4900 & 4899 & 9799 & 6534 & 1 & 0 & 6532 & 0 & 3266 & 4900 & 1 & 4899 & 0 & 1.49985 & 2 & 3 & 3.0 & 3 \\
dixmaanf4899 & 4899 & 14697 & 6535 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaang4899 & 4899 & 14697 & 6535 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaanh4899 & 4899 & 14697 & 6535 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaani4899 & 4899 & 9799 & 6534 & 1 & 0 & 6532 & 0 & 3266 & 4900 & 1 & 4899 & 0 & 1.49985 & 2 & 3 & 3.0 & 3 \\
dixmaanj4899 & 4899 & 14697 & 6535 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaank4899 & 4899 & 14697 & 6535 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaanl4899 & 4899 & 14697 & 6535 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaanm4899 & 4899 & 9799 & 9799 & 1 & 0 & 6532 & 0 & 3266 & 4900 & 1 & 4899 & 0 & 1.49985 & 2 & 3 & 3.0 & 3 \\
dixmaann4899 & 4899 & 14697 & 14697 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaano4899 & 4899 & 14697 & 14697 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixmaanp4899 & 4899 & 14697 & 14697 & 1 & 0 & 6532 & 0 & 8164 & 4900 & 1 & 9797 & 0 & 1.66653 & 2 & 4 & 4.99959 & 5 \\
dixon3dq4899 & 4899 & 4899 & 2 & 0 & 0 & 4899 & 0 & 0 & 4899 & 0 & 0 & 1 & 1.99959 & 2 & 1 & 1.99959 & 2 \\
dqdrtic4899 & 4899 & 4899 & 5 & 0 & 0 & 4899 & 0 & 0 & 4899 & 0 & 0 & 1 & 1.0 & 1 & 1 & 1.0 & 1 \\
dqrtic4899 & 4899 & 4899 & 4899 & 0 & 0 & 0 & 0 & 4899 & 4899 & 0 & 0 & 1 & 1.0 & 1 & 1 & 1.0 & 1 \\
edensch4899 & 4899 & 14695 & 4 & 1 & 0 & 4898 & 0 & 9796 & 9797 & 1 & 4898 & 0 & 1.33324 & 2 & 2 & 3.99918 & 4 \\
engval14899 & 4899 & 9797 & 3 & 1 & 4898 & 0 & 0 & 4898 & 9797 & 4899 & 0 & 0 & 1.49985 & 2 & 1 & 2.99939 & 3 \\
errinros4899 & 4899 & 9796 & 4899 & 0 & 0 & 4898 & 0 & 4898 & 4898 & 0 & 4898 & 1 & 1.5 & 2 & 1 & 2.99939 & 3 \\
extrosnb4899 & 4899 & 4899 & 2 & 0 & 0 & 1 & 0 & 4898 & 1 & 0 & 4898 & 1 & 1.9998 & 2 & 1 & 1.9998 & 2 \\
fletcbv24899 & 4899 & 14698 & 5 & 0 & 4899 & 4900 & 0 & 4899 & 9799 & 4899 & 4899 & 1 & 1.33324 & 2 & 4 & 4.0 & 4 \\
fletcbv34899 & 4899 & 14698 & 4 & 0 & 0 & 4900 & 0 & 9798 & 4900 & 0 & 9798 & 1 & 1.33324 & 2 & 4 & 4.0 & 4 \\
freuroth4899 & 4899 & 9796 & 4 & 0 & 0 & 0 & 0 & 9796 & 0 & 0 & 9796 & 2 & 2.0 & 2 & 2 & 3.99918 & 4 \\
genhumps4899 & 4899 & 9797 & 3 & 0 & 0 & 4899 & 0 & 4898 & 4899 & 0 & 4898 & 1 & 1.49995 & 2 & 2 & 2.99959 & 3 \\
genrose4899 & 4899 & 9797 & 3 & 1 & 0 & 4898 & 0 & 4898 & 4899 & 1 & 4898 & 0 & 1.49985 & 2 & 1 & 2.99939 & 3 \\
genrose_nash4899 & 4899 & 9797 & 3 & 1 & 0 & 4898 & 0 & 4898 & 4899 & 1 & 4898 & 0 & 1.49985 & 2 & 1 & 2.99939 & 3 \\
morebv4899 & 4899 & 4899 & 4899 & 0 & 0 & 0 & 0 & 4899 & 0 & 0 & 4899 & 2 & 2.99959 & 3 & 2 & 2.99959 & 3 \\
ncb204899 & 4899 & 14667 & 4893 & 1 & 4888 & 10 & 10 & 9758 & 9788 & 4889 & 4879 & 0 & 7.30872 & 20 & 1 & 21.8814 & 23 \\
noncvxu24899 & 4899 & 9798 & 6 & 0 & 0 & 4899 & 0 & 4899 & 4899 & 0 & 4899 & 2 & 2.99959 & 3 & 4 & 5.99918 & 10 \\
noncvxun4899 & 4899 & 9796 & 6 & 0 & 0 & 4898 & 0 & 4898 & 4898 & 0 & 4898 & 1 & 2.99959 & 3 & 2 & 5.99796 & 10 \\
nondia4899 & 4899 & 4899 & 2 & 0 & 0 & 1 & 0 & 4898 & 1 & 0 & 4898 & 1 & 1.9998 & 2 & 1 & 1.9998 & 4899 \\
nondquar4899 & 4899 & 4899 & 2 & 0 & 0 & 2 & 0 & 4897 & 4899 & 0 & 0 & 2 & 2.99959 & 3 & 2 & 2.99959 & 4898 \\
penalty34899 & 4899 & 2454 & 6 & 1 & 0 & 2449 & 0 & 4 & 2450 & 1 & 4 & 0 & 8.98289 & 4899 & 3 & 4.49969 & 5 \\
powellsg4899 & 4896 & 4896 & 4 & 0 & 0 & 2448 & 0 & 2448 & 4896 & 0 & 0 & 2 & 2.0 & 2 & 2 & 2.0 & 2 \\
quartc4896 & 4896 & 4896 & 4896 & 0 & 0 & 0 & 0 & 4896 & 4896 & 0 & 0 & 1 & 1.0 & 1 & 1 & 1.0 & 1 \\
sbrybnd4896 & 4896 & 4896 & 4896 & 0 & 0 & 0 & 0 & 4896 & 0 & 0 & 4896 & 2 & 6.99673 & 7 & 2 & 6.99673 & 7 \\
schmvett4896 & 4896 & 14682 & 3 & 0 & 0 & 0 & 0 & 14682 & 0 & 0 & 14682 & 2 & 2.33333 & 3 & 2 & 6.99714 & 7 \\
sinquad4896 & 4896 & 4896 & 3 & 0 & 0 & 0 & 0 & 4896 & 1 & 0 & 4895 & 1 & 2.99939 & 3 & 1 & 2.99939 & 4896 \\
sparsine4896 & 4896 & 4896 & 4896 & 0 & 0 & 0 & 0 & 4896 & 0 & 0 & 4896 & 1 & 5.99285 & 6 & 4 & 5.99285 & 9 \\
sparsqur4896 & 4896 & 4896 & 4896 & 0 & 0 & 0 & 0 & 4896 & 4896 & 0 & 0 & 1 & 5.99285 & 6 & 4 & 5.99285 & 9 \\
spmsrtls4896 & 4897 & 9791 & 9791 & 0 & 0 & 0 & 0 & 9791 & 0 & 0 & 9791 & 1 & 2.16658 & 3 & 3 & 4.33184 & 5 \\
srosenbr4897 & 4896 & 4896 & 2 & 0 & 0 & 2448 & 0 & 2448 & 2448 & 0 & 2448 & 1 & 1.5 & 2 & 1 & 1.5 & 2 \\
tointgss4896 & 4896 & 4894 & 2 & 0 & 0 & 0 & 0 & 4894 & 0 & 0 & 4894 & 3 & 3.0 & 3 & 1 & 2.99877 & 3 \\
tquartic4896 & 4896 & 4895 & 2 & 0 & 0 & 1 & 0 & 4894 & 1 & 0 & 4894 & 1 & 1.9998 & 2 & 0 & 1.99939 & 4895 \\
tridia4896 & 4896 & 4896 & 4896 & 0 & 0 & 4896 & 0 & 0 & 4896 & 0 & 0 & 1 & 1.9998 & 2 & 1 & 1.9998 & 2 \\
vardim4896 & 4896 & 4898 & 3 & 0 & 0 & 4897 & 0 & 1 & 4898 & 0 & 0 & 1 & 2.99878 & 4896 & 3 & 3.0 & 3 \\
woods4896 & 4896 & 7344 & 5 & 0 & 0 & 4896 & 0 & 2448 & 4896 & 0 & 2448 & 1 & 1.66667 & 2 & 2 & 2.5 & 3 \\\hline\hline
\end{tabular}
\end{table} |
Beta Was this translation helpful? Give feedback.
-
@dpo, I splitted my performance profiles about partitioned quasi-Newton methods as we discussed to clarify them.
The profiles consider partially separable problems where
n=5000
.I made 3 pools:
time_profile.pdf
iter_profile.pdf
iter_profile.pdf
time_profile.pdf
iter_profile.pdf
time_profile.pdf
Then, I gathered the best methods, in terms of iterations or time for a last batch of performance profiles.
I kept: a PSNLPModel, the LBFGS linesearch, PSENLPModel, PSR1NLPModel and PLSENLPModel.
iter_profile.pdf
time_profile.pdf
The conclusion remains unchanged, but are easier to deduce.
Beta Was this translation helpful? Give feedback.
All reactions