From bd5544cb6eb393130b2538bb114549dbd3e71443 Mon Sep 17 00:00:00 2001 From: Rafael Fourquet Date: Fri, 12 Sep 2014 19:50:18 +0530 Subject: [PATCH 1/3] make the seed of a MersenneTwister be always a Vector{Uint32} MersenneTwister's constructor making an instance with an Uint32 seed was removed in commit 4fb4622f5c. But a subsequent call to srand(r::MersenneTwister, seed) would only accept an Uint32 as a seed, and would always make r.seed an Uint32; this was not consistent. --- base/random.jl | 26 +++++++++----------------- 1 file changed, 9 insertions(+), 17 deletions(-) diff --git a/base/random.jl b/base/random.jl index b1fb899c964d5..a9a24664a127e 100644 --- a/base/random.jl +++ b/base/random.jl @@ -13,17 +13,13 @@ abstract AbstractRNG type MersenneTwister <: AbstractRNG state::DSFMT_state - seed::Union(Uint32,Vector{Uint32}) vals::Vector{Float64} idx::Int + seed::Vector{Uint32} - function MersenneTwister(seed::Vector{Uint32}) - state = DSFMT_state() - dsfmt_init_by_array(state, seed) - return new(state, seed, Array(Float64, dsfmt_get_min_array_size()), dsfmt_get_min_array_size()) - end - - MersenneTwister(seed=0) = MersenneTwister(make_seed(seed)) + MersenneTwister(seed) = srand(new(DSFMT_state(), Array(Float64, dsfmt_get_min_array_size())), + seed) + MersenneTwister() = MersenneTwister(0) end ## Low level API for MersenneTwister @@ -47,13 +43,15 @@ end @inline rand_ui32(r::MersenneTwister) = reinterpret(Uint64, rand_close1_open2(r)) % Uint32 -function srand(r::MersenneTwister, seed) +function srand(r::MersenneTwister, seed::Vector{Uint32}) r.seed = seed - dsfmt_init_gen_rand(r.state, seed) + dsfmt_init_by_array(r.state, r.seed) r.idx = length(r.vals) return r end +srand(r::MersenneTwister, n::Integer) = srand(r, make_seed(n)) + ## initialization function srand() @@ -83,13 +81,7 @@ __init__() = srand() ## srand() -function srand(seed::Vector{Uint32}) - GLOBAL_RNG.seed = seed - dsfmt_init_by_array(GLOBAL_RNG.state, seed) - GLOBAL_RNG.idx = length(GLOBAL_RNG.vals) - return GLOBAL_RNG -end -srand(n::Integer) = srand(make_seed(n)) +srand(seed::Union(Integer, Vector{Uint32})) = srand(GLOBAL_RNG, seed) function make_seed(n::Integer) n < 0 && throw(DomainError()) From 876d2dd795514d5c886da141b26f2e3076d329a0 Mon Sep 17 00:00:00 2001 From: Rafael Fourquet Date: Fri, 12 Sep 2014 20:23:12 +0530 Subject: [PATCH 2/3] add more methods srand(::MersenneTwister, ...) The srand methods working on a MersenneTwister instance did not catch up with those working on the global RNG. They are now made similar thanks to the make_seed function, which implements the different logics. Also, the manual is more precise on the types of valid seeds. --- base/random.jl | 36 +++++++++++++++++++++--------------- doc/stdlib/base.rst | 2 +- 2 files changed, 22 insertions(+), 16 deletions(-) diff --git a/base/random.jl b/base/random.jl index a9a24664a127e..f0fe700df9c0c 100644 --- a/base/random.jl +++ b/base/random.jl @@ -50,15 +50,18 @@ function srand(r::MersenneTwister, seed::Vector{Uint32}) return r end -srand(r::MersenneTwister, n::Integer) = srand(r, make_seed(n)) - ## initialization -function srand() +__init__() = srand() + +## make_seed() +# make_seed methods produce values of type Array{Uint32}, suitable for MersenneTwister seeding + +function make_seed() @unix_only begin try - srand("/dev/urandom") + return make_seed("/dev/urandom", 4) catch println(STDERR, "Entropy pool not available to seed RNG; using ad-hoc entropy sources.") seed = reinterpret(Uint64, time()) @@ -66,23 +69,17 @@ function srand() try seed = hash(seed, parseint(Uint64, readall(`ifconfig` |> `sha1sum`)[1:40], 16)) end - srand(seed) + return make_seed(seed) end end @windows_only begin a = zeros(Uint32, 2) win32_SystemFunction036!(a) - srand(a) + return a end end -__init__() = srand() - -## srand() - -srand(seed::Union(Integer, Vector{Uint32})) = srand(GLOBAL_RNG, seed) - function make_seed(n::Integer) n < 0 && throw(DomainError()) seed = Uint32[] @@ -95,14 +92,23 @@ function make_seed(n::Integer) end end -function srand(filename::String, n::Integer) +function make_seed(filename::String, n::Integer) open(filename) do io a = Array(Uint32, int(n)) read!(io, a) - srand(a) + a end end -srand(filename::String) = srand(filename, 4) + +## srand() + +srand(r::MersenneTwister) = srand(r, make_seed()) +srand(r::MersenneTwister, n::Integer) = srand(r, make_seed(n)) +srand(r::MersenneTwister, filename::String, n::Integer=4) = srand(r, make_seed(filename, n)) + +srand() = srand(GLOBAL_RNG) +srand(seed::Union(Integer, Vector{Uint32})) = srand(GLOBAL_RNG, seed) +srand(filename::String, n::Integer=4) = srand(GLOBAL_RNG, filename, n) ## Global RNG diff --git a/doc/stdlib/base.rst b/doc/stdlib/base.rst index f16fc57821693..b049950f509d4 100644 --- a/doc/stdlib/base.rst +++ b/doc/stdlib/base.rst @@ -3933,7 +3933,7 @@ Random number generation in Julia uses the `Mersenne Twister library Date: Tue, 16 Sep 2014 14:54:26 +0530 Subject: [PATCH 3/3] add more methods rand(rng, ...) And similarly for rand!, randbool. Fixes #8360. --- base/bitarray.jl | 4 +-- base/random.jl | 88 +++++++++++++++++++++++---------------------- doc/stdlib/base.rst | 30 ++++++---------- test/random.jl | 7 +++- 4 files changed, 64 insertions(+), 65 deletions(-) diff --git a/base/bitarray.jl b/base/bitarray.jl index 5a70c49605ca4..54387b953db02 100644 --- a/base/bitarray.jl +++ b/base/bitarray.jl @@ -331,10 +331,10 @@ bitpack{T,N}(A::AbstractArray{T,N}) = convert(BitArray{N}, A) ## Random ## -function bitarray_rand_fill!(B::BitArray) +function bitarray_rand_fill!(rng, B::BitArray) # rng is an AbstractRNG length(B) == 0 && return B Bc = B.chunks - rand!(Bc) + rand!(rng, Bc) Bc[end] &= @_msk_end length(B) return B end diff --git a/base/random.jl b/base/random.jl index f0fe700df9c0c..c40ac17e03599 100644 --- a/base/random.jl +++ b/base/random.jl @@ -115,49 +115,53 @@ srand(filename::String, n::Integer=4) = srand(GLOBAL_RNG, filename, n) const GLOBAL_RNG = MersenneTwister() globalRNG() = GLOBAL_RNG -## random floating point values +# rand: a non-specified RNG defaults to GLOBAL_RNG -rand(r::MersenneTwister=GLOBAL_RNG) = rand_close_open(r) +rand() = rand(GLOBAL_RNG) +rand(T::Type) = rand(GLOBAL_RNG, T) +rand(::()) = rand(GLOBAL_RNG, ()) # needed to resolve ambiguity +rand(dims::Dims) = rand(GLOBAL_RNG, dims) +rand(dims::Int...) = rand(dims) +rand(T::Type, dims::Dims) = rand(GLOBAL_RNG, T, dims) +rand(T::Type, d1::Int, dims::Int...) = rand(T, tuple(d1, dims...)) +rand!(A::AbstractArray) = rand!(GLOBAL_RNG, A) -rand(::Type{Float64}) = rand() +## random floating point values -rand(::Type{Float32}) = float32(rand()) -rand(::Type{Float16}) = float16(rand()) +rand(r::AbstractRNG) = rand(r, Float64) -rand{T<:Real}(::Type{Complex{T}}) = complex(rand(T),rand(T)) +# MersenneTwister +rand(r::MersenneTwister, ::Type{Float64}) = rand_close_open(r) +rand{T<:Union(Float16, Float32)}(r::MersenneTwister, ::Type{T}) = convert(T, rand(r, Float64)) -## random integers +## random integers (MersenneTwister) -rand(::Type{Uint8}) = rand(Uint32) % Uint8 -rand(::Type{Uint16}) = rand(Uint32) % Uint16 -rand(::Type{Uint32}) = rand_ui32(GLOBAL_RNG) -rand(::Type{Uint64}) = uint64(rand(Uint32)) <<32 | rand(Uint32) -rand(::Type{Uint128}) = uint128(rand(Uint64))<<64 | rand(Uint64) +rand(r::MersenneTwister, ::Type{Uint8}) = rand(r, Uint32) % Uint8 +rand(r::MersenneTwister, ::Type{Uint16}) = rand(r, Uint32) % Uint16 +rand(r::MersenneTwister, ::Type{Uint32}) = rand_ui32(r) +rand(r::MersenneTwister, ::Type{Uint64}) = uint64(rand(r, Uint32)) <<32 | rand(r, Uint32) +rand(r::MersenneTwister, ::Type{Uint128}) = uint128(rand(r, Uint64))<<64 | rand(r, Uint64) -rand(::Type{Int8}) = rand(Uint32) % Int8 -rand(::Type{Int16}) = rand(Uint32) % Int16 -rand(::Type{Int32}) = reinterpret(Int32,rand(Uint32)) -rand(::Type{Int64}) = reinterpret(Int64,rand(Uint64)) -rand(::Type{Int128}) = reinterpret(Int128,rand(Uint128)) +rand(r::MersenneTwister, ::Type{Int8}) = rand(r, Uint32) % Int8 +rand(r::MersenneTwister, ::Type{Int16}) = rand(r, Uint32) % Int16 +rand(r::MersenneTwister, ::Type{Int32}) = reinterpret(Int32, rand(r, Uint32)) +rand(r::MersenneTwister, ::Type{Int64}) = reinterpret(Int64, rand(r, Uint64)) +rand(r::MersenneTwister, ::Type{Int128}) = reinterpret(Int128, rand(r, Uint128)) -# Arrays of random numbers +## random complex values -rand(::Type{Float64}, dims::Dims) = rand!(Array(Float64, dims)) -rand(::Type{Float64}, dims::Int...) = rand(Float64, dims) +rand{T<:Real}(r::AbstractRNG, ::Type{Complex{T}}) = complex(rand(r, T), rand(r, T)) -rand(dims::Dims) = rand(Float64, dims) -rand(dims::Int...) = rand(Float64, dims) +## Arrays of random numbers -rand(r::AbstractRNG) = rand(r, Float64) -rand(r::AbstractRNG, dims::Dims) = rand!(r, Array(Float64, dims)) +rand(r::AbstractRNG, dims::Dims) = rand(r, Float64, dims) rand(r::AbstractRNG, dims::Int...) = rand(r, dims) -function rand!{T}(A::Array{T}) - for i = 1:length(A) - A[i] = rand(T) - end - A -end +rand(r::AbstractRNG, T::Type, dims::Dims) = rand!(r, Array(T, dims)) +rand(r::AbstractRNG, T::Type, d1::Int, dims::Int...) = rand(r, T, tuple(d1, dims...)) +# note: the above method would trigger an ambiguity warning if d1 was not separated out: +# rand(r, ()) would match both this method and rand(r, dims::Dims) +# moreover, a call like rand(r, NotImplementedType()) would be an infinite loop function rand!{T}(r::AbstractRNG, A::AbstractArray{T}) for i = 1:length(A) @@ -166,6 +170,8 @@ function rand!{T}(r::AbstractRNG, A::AbstractArray{T}) A end +# MersenneTwister + function rand_AbstractArray_Float64!(r::MersenneTwister, A::AbstractArray{Float64}) n = length(A) # what follows is equivalent to this simple loop but more efficient: @@ -201,14 +207,6 @@ function rand!(r::MersenneTwister, A::Array{Float64}) A end -rand!(A::AbstractArray{Float64}) = rand!(GLOBAL_RNG, A) -rand!(A::Array{Float64}) = rand!(GLOBAL_RNG, A) - -rand(T::Type, dims::Dims) = rand!(Array(T, dims)) -rand{T<:Number}(::Type{T}) = error("no random number generator for type $T; try a more specific type") -rand{T<:Number}(::Type{T}, dims::Int...) = rand(T, dims) - - ## Generate random integer within a range # remainder function according to Knuth, where rem_knuth(a, 0) = a @@ -295,16 +293,20 @@ end rand{T}(r::Range{T}, dims::Dims) = rand!(r, Array(T, dims)) rand(r::Range, dims::Int...) = rand(r, dims) +## random BitArrays (AbstractRNG) -## random Bools +rand!(r::AbstractRNG, B::BitArray) = Base.bitarray_rand_fill!(r, B) -rand!(B::BitArray) = Base.bitarray_rand_fill!(B) +randbool(r::AbstractRNG, dims::Dims) = rand!(r, BitArray(dims)) +randbool(r::AbstractRNG, dims::Int...) = rand!(r, BitArray(dims)) -randbool(dims::Dims) = rand!(BitArray(dims)) +randbool(dims::Dims) = rand!(BitArray(dims)) randbool(dims::Int...) = rand!(BitArray(dims)) -randbool() = ((rand(Uint32) & 1) == 1) -rand(::Type{Bool}) = randbool() +randbool(r::MersenneTwister=GLOBAL_RNG) = ((rand(r, Uint32) & 1) == 1) + +rand(r::MersenneTwister, ::Type{Bool}) = randbool(r) + ## randn() - Normally distributed random numbers using Ziggurat algorithm diff --git a/doc/stdlib/base.rst b/doc/stdlib/base.rst index b049950f509d4..ecf76b77e7c02 100644 --- a/doc/stdlib/base.rst +++ b/doc/stdlib/base.rst @@ -3931,43 +3931,35 @@ Random Numbers Random number generation in Julia uses the `Mersenne Twister library `_. Julia has a global RNG, which is used by default. Multiple RNGs can be plugged in using the ``AbstractRNG`` object, which can then be used to have multiple streams of random numbers. Currently, only ``MersenneTwister`` is supported. +Most functions related to random generation accept an optional ``AbstractRNG`` as the first argument, ``rng`` , which defaults to the global one if not provided. Morever, some of them accept optionally dimension specifications ``dims...`` (which can be given as a tuple) to generate arrays of random values. + +A ``MersenneTwister`` RNG can generate random numbers of the following types: ``Float16, Float32, Float64, Bool, Int16, Uint16, Int32, Uint32, Int64, Uint64, Int128, Uint128`` (or complex numbers or arrays of those types). Random floating point numbers are generated uniformly in [0,1). + .. function:: srand([rng], [seed]) - Reseed the random number generator. If a ``seed`` is provided, the RNG will give a reproducible sequence of numbers, otherwise Julia will get entropy from the system. The ``seed`` may be a non-negative integer, a vector of ``Uint32`` integers or a filename, in which case the seed is read from a file. If the argument ``rng`` is not provided, the default global RNG is seeded. + Reseed the random number generator. If a ``seed`` is provided, the RNG will give a reproducible sequence of numbers, otherwise Julia will get entropy from the system. The ``seed`` may be a non-negative integer, a vector of ``Uint32`` integers or a filename, in which case the seed is read from a file. .. function:: MersenneTwister([seed]) Create a ``MersenneTwister`` RNG object. Different RNG objects can have their own seeds, which may be useful for generating different streams of random numbers. -.. function:: rand() -> Float64 +.. function:: rand([rng], [t::Type], [dims...]) - Generate a ``Float64`` random number uniformly in [0,1) + Generate a random value or an array of random values of the given type, ``t``, which defaults to ``Float64``. .. function:: rand!([rng], A) - Populate the array A with random number generated from the specified RNG. - -.. function:: rand(rng::AbstractRNG, [dims...]) - - Generate a random ``Float64`` number or array of the size specified by dims, using the specified RNG object. Currently, ``MersenneTwister`` is the only available Random Number Generator (RNG), which may be seeded using srand. - -.. function:: rand(dims or [dims...]) - - Generate a random ``Float64`` array of the size specified by dims - -.. function:: rand(t::Type, [dims...]) - - Generate a random number or array of random numbes of the given type. + Populate the array A with random values. .. function:: rand(r, [dims...]) Pick a random element or array of random elements from range ``r`` (for example, ``1:n`` or ``0:2:10``). -.. function:: randbool([dims...]) +.. function:: randbool([rng], [dims...]) - Generate a random boolean value. Optionally, generate an array of random boolean values. + Generate a random boolean value. Optionally, generate a ``BitArray`` of random boolean values. -.. function:: randn([rng], dims or [dims...]) +.. function:: randn([rng], [dims...]) Generate a normally-distributed random number with mean 0 and standard deviation 1. Optionally generate an array of normally-distributed random numbers. diff --git a/test/random.jl b/test/random.jl index 2c099af854831..9b549d27a856f 100644 --- a/test/random.jl +++ b/test/random.jl @@ -19,12 +19,17 @@ srand(0); rand(); x = rand(384); # Try a seed larger than 2^32 @test rand(MersenneTwister(5294967296)) == 0.3498809918210497 -# Test array filling, Issue #7643 +# Test array filling, Issues #7643, #8360 @test rand(MersenneTwister(0), 1) == [0.8236475079774124] A = zeros(2, 2) rand!(MersenneTwister(0), A) @test A == [0.8236475079774124 0.16456579813368521; 0.9103565379264364 0.17732884646626457] +@test rand(MersenneTwister(0), Int64, 1) == [172014471070449746] +A = zeros(Int64, 2, 2) +rand!(MersenneTwister(0), A) +@test A == [ 172014471070449746 -193283627354378518; + -4679130500738884555 -9008350441255501549] # randn @test randn(MersenneTwister(42)) == -0.5560268761463861