-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy patharraymath.jl
289 lines (244 loc) · 5.02 KB
/
arraymath.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# This file is a part of Julia. License is MIT: http://julialang.org/license
## Unary operators ##
"""
conj!(A)
Transform an array to its complex conjugate in-place.
See also [`conj`](@ref).
```jldoctest
julia> A = [1+im 2-im; 2+2im 3+im]
2×2 Array{Complex{Int64},2}:
1+1im 2-1im
2+2im 3+1im
julia> conj!(A);
julia> A
2×2 Array{Complex{Int64},2}:
1-1im 2+1im
2-2im 3-1im
```
"""
conj!(A::AbstractArray{<:Number}) = (@inbounds broadcast!(conj, A, A); A)
for f in (:-, :conj, :real, :imag)
@eval ($f)(A::AbstractArray) = broadcast($f, A)
end
## Binary arithmetic operators ##
for f in (:+, :-)
@eval function ($f)(A::AbstractArray, B::AbstractArray)
promote_shape(A, B) # check size compatibility
broadcast($f, A, B)
end
end
for f in (:/, :\, :*, :+, :-)
if f != :/
@eval ($f)(A::Number, B::AbstractArray) = broadcast($f, A, B)
end
if f != :\
@eval ($f)(A::AbstractArray, B::Number) = broadcast($f, A, B)
end
end
## data movement ##
function flipdim{T}(A::Array{T}, d::Integer)
nd = ndims(A)
1 ≤ d ≤ nd || throw(ArgumentError("dimension $d is not 1 ≤ $d ≤ $nd"))
sd = size(A, d)
if sd == 1 || isempty(A)
return copy(A)
end
B = similar(A)
nnd = 0
for i = 1:nd
nnd += Int(size(A,i)==1 || i==d)
end
if nnd==nd
# flip along the only non-singleton dimension
for i = 1:sd
B[i] = A[sd+1-i]
end
return B
end
d_in = size(A)
leading = d_in[1:(d-1)]
M = prod(leading)
N = length(A)
stride = M * sd
if M==1
for j = 0:stride:(N-stride)
for i = 1:sd
ri = sd+1-i
B[j + ri] = A[j + i]
end
end
else
if isbits(T) && M>200
for i = 1:sd
ri = sd+1-i
for j=0:stride:(N-stride)
offs = j + 1 + (i-1)*M
boffs = j + 1 + (ri-1)*M
copy!(B, boffs, A, offs, M)
end
end
else
for i = 1:sd
ri = sd+1-i
for j=0:stride:(N-stride)
offs = j + 1 + (i-1)*M
boffs = j + 1 + (ri-1)*M
for k=0:(M-1)
B[boffs + k] = A[offs + k]
end
end
end
end
end
return B
end
"""
rotl90(A)
Rotate matrix `A` left 90 degrees.
```jldoctest
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a)
2×2 Array{Int64,2}:
2 4
1 3
```
"""
function rotl90(A::AbstractMatrix)
ind1, ind2 = indices(A)
B = similar(A, (ind2,ind1))
n = first(ind2)+last(ind2)
for i=indices(A,1), j=ind2
B[n-j,i] = A[i,j]
end
return B
end
"""
rotr90(A)
Rotate matrix `A` right 90 degrees.
```jldoctest
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a)
2×2 Array{Int64,2}:
3 1
4 2
```
"""
function rotr90(A::AbstractMatrix)
ind1, ind2 = indices(A)
B = similar(A, (ind2,ind1))
m = first(ind1)+last(ind1)
for i=ind1, j=indices(A,2)
B[j,m-i] = A[i,j]
end
return B
end
"""
rot180(A)
Rotate matrix `A` 180 degrees.
```jldoctest
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a)
2×2 Array{Int64,2}:
4 3
2 1
```
"""
function rot180(A::AbstractMatrix)
B = similar(A)
ind1, ind2 = indices(A,1), indices(A,2)
m, n = first(ind1)+last(ind1), first(ind2)+last(ind2)
for j=ind2, i=ind1
B[m-i,n-j] = A[i,j]
end
return B
end
"""
rotl90(A, k)
Rotate matrix `A` left 90 degrees an integer `k` number of times.
If `k` is zero or a multiple of four, this is equivalent to a `copy`.
```jldoctest
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotl90(a,1)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotl90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotl90(a,3)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotl90(a,4)
2×2 Array{Int64,2}:
1 2
3 4
```
"""
function rotl90(A::AbstractMatrix, k::Integer)
k = mod(k, 4)
k == 1 ? rotl90(A) :
k == 2 ? rot180(A) :
k == 3 ? rotr90(A) : copy(A)
end
"""
rotr90(A, k)
Rotate matrix `A` right 90 degrees an integer `k` number of times. If `k` is zero or a
multiple of four, this is equivalent to a `copy`.
```jldoctest
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rotr90(a,1)
2×2 Array{Int64,2}:
3 1
4 2
julia> rotr90(a,2)
2×2 Array{Int64,2}:
4 3
2 1
julia> rotr90(a,3)
2×2 Array{Int64,2}:
2 4
1 3
julia> rotr90(a,4)
2×2 Array{Int64,2}:
1 2
3 4
```
"""
rotr90(A::AbstractMatrix, k::Integer) = rotl90(A,-k)
"""
rot180(A, k)
Rotate matrix `A` 180 degrees an integer `k` number of times.
If `k` is even, this is equivalent to a `copy`.
```jldoctest
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4
julia> rot180(a,1)
2×2 Array{Int64,2}:
4 3
2 1
julia> rot180(a,2)
2×2 Array{Int64,2}:
1 2
3 4
```
"""
rot180(A::AbstractMatrix, k::Integer) = mod(k, 2) == 1 ? rot180(A) : copy(A)