-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
Copy pathfloatfuncs.jl
245 lines (204 loc) · 8.49 KB
/
floatfuncs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# This file is a part of Julia. License is MIT: https://julialang.org/license
## floating-point functions ##
copysign(x::Float64, y::Float64) = copysign_float(x, y)
copysign(x::Float32, y::Float32) = copysign_float(x, y)
copysign(x::Float32, y::Real) = copysign(x, Float32(y))
copysign(x::Float64, y::Real) = copysign(x, Float64(y))
flipsign(x::Float64, y::Float64) = bitcast(Float64, xor_int(bitcast(UInt64, x), and_int(bitcast(UInt64, y), 0x8000000000000000)))
flipsign(x::Float32, y::Float32) = bitcast(Float32, xor_int(bitcast(UInt32, x), and_int(bitcast(UInt32, y), 0x80000000)))
flipsign(x::Float32, y::Real) = flipsign(x, Float32(y))
flipsign(x::Float64, y::Real) = flipsign(x, Float64(y))
signbit(x::Float64) = signbit(bitcast(Int64, x))
signbit(x::Float32) = signbit(bitcast(Int32, x))
signbit(x::Float16) = signbit(bitcast(Int16, x))
maxintfloat(::Type{Float64}) = 9007199254740992.
maxintfloat(::Type{Float32}) = Float32(16777216.)
maxintfloat(::Type{Float16}) = Float16(2048f0)
maxintfloat(x::T) where {T<:AbstractFloat} = maxintfloat(T)
maxintfloat() = maxintfloat(Float64)
isinteger(x::AbstractFloat) = (x - trunc(x) == 0)
num2hex(x::Float16) = hex(bitcast(UInt16, x), 4)
num2hex(x::Float32) = hex(bitcast(UInt32, x), 8)
num2hex(x::Float64) = hex(bitcast(UInt64, x), 16)
function hex2num(s::AbstractString)
if length(s) <= 4
return bitcast(Float16, parse(UInt16, s, 16))
end
if length(s) <= 8
return bitcast(Float32, parse(UInt32, s, 16))
end
return bitcast(Float64, parse(UInt64, s, 16))
end
"""
round([T,] x, [digits, [base]], [r::RoundingMode])
Rounds `x` to an integer value according to the provided
[`RoundingMode`](@ref), returning a value of the same type as `x`. When not
specifying a rounding mode the global mode will be used
(see [`rounding`](@ref)), which by default is round to the nearest integer
([`RoundNearest`](@ref) mode), with ties (fractional values of 0.5) being
rounded to the nearest even integer.
```jldoctest
julia> round(1.7)
2.0
julia> round(1.5)
2.0
julia> round(2.5)
2.0
```
The optional [`RoundingMode`](@ref) argument will change how the number gets
rounded.
`round(T, x, [r::RoundingMode])` converts the result to type `T`, throwing an
[`InexactError`](@ref) if the value is not representable.
`round(x, digits)` rounds to the specified number of digits after the decimal place (or
before if negative). `round(x, digits, base)` rounds using a base other than 10.
```jldoctest
julia> round(pi, 2)
3.14
julia> round(pi, 3, 2)
3.125
```
!!! note
Rounding to specified digits in bases other than 2 can be inexact when
operating on binary floating point numbers. For example, the `Float64`
value represented by `1.15` is actually *less* than 1.15, yet will be
rounded to 1.2.
```jldoctest
julia> x = 1.15
1.15
julia> @sprintf "%.20f" x
"1.14999999999999991118"
julia> x < 115//100
true
julia> round(x, 1)
1.2
```
"""
round(T::Type, x)
round(x::Real, ::RoundingMode{:ToZero}) = trunc(x)
round(x::Real, ::RoundingMode{:Up}) = ceil(x)
round(x::Real, ::RoundingMode{:Down}) = floor(x)
# C-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesAway})
y = trunc(x)
ifelse(x==y,y,trunc(2*x-y))
end
# Java-style round
function round(x::AbstractFloat, ::RoundingMode{:NearestTiesUp})
y = floor(x)
ifelse(x==y,y,copysign(floor(2*x-y),x))
end
round(::Type{T}, x::AbstractFloat, r::RoundingMode) where {T<:Integer} = trunc(T,round(x,r))
# adapted from Matlab File Exchange roundsd: http://www.mathworks.com/matlabcentral/fileexchange/26212
# for round, og is the power of 10 relative to the decimal point
# for signif, og is the absolute power of 10
# digits and base must be integers, x must be convertable to float
function _signif_og(x, digits, base)
if base == 10
e = floor(log10(abs(x)) - digits + 1.)
og = oftype(x, exp10(abs(e)))
elseif base == 2
e = exponent(abs(x)) - digits + 1.
og = oftype(x, exp2(abs(e)))
else
e = floor(log(base, abs(x)) - digits + 1.)
og = oftype(x, float(base) ^ abs(e))
end
return og, e
end
function signif(x::Real, digits::Integer, base::Integer=10)
digits < 1 && throw(DomainError())
x = float(x)
(x == 0 || !isfinite(x)) && return x
og, e = _signif_og(x, digits, base)
if e >= 0 # for numeric stability
r = round(x/og)*og
else
r = round(x*og)/og
end
!isfinite(r) ? x : r
end
for f in (:round, :ceil, :floor, :trunc)
@eval begin
function ($f)(x::Real, digits::Integer, base::Integer=10)
x = float(x)
og = convert(eltype(x),base)^digits
r = ($f)(x * og) / og
if !isfinite(r)
if digits > 0
return x
elseif x > 0
return $(:ceil == f ? :(convert(eltype(x), Inf)) : :(zero(x)))
elseif x < 0
return $(:floor == f ? :(-convert(eltype(x), Inf)) : :(-zero(x)))
else
return x
end
end
return r
end
end
end
# isapprox: approximate equality of numbers
"""
isapprox(x, y; rtol::Real=sqrt(eps), atol::Real=0, nans::Bool=false, norm::Function)
Inexact equality comparison: `true` if `norm(x-y) <= atol + rtol*max(norm(x), norm(y))`. The
default `atol` is zero and the default `rtol` depends on the types of `x` and `y`. The keyword
argument `nans` determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, `rtol` defaults to
`sqrt(eps(typeof(real(x-y))))`. This corresponds to requiring equality of about half of the
significand digits. For other types, `rtol` defaults to zero.
`x` and `y` may also be arrays of numbers, in which case `norm` defaults to `vecnorm` but
may be changed by passing a `norm::Function` keyword argument. (For numbers, `norm` is the
same thing as `abs`.) When `x` and `y` are arrays, if `norm(x-y)` is not finite (i.e. `±Inf`
or `NaN`), the comparison falls back to checking whether all elements of `x` and `y` are
approximately equal component-wise.
The binary operator `≈` is equivalent to `isapprox` with the default arguments, and `x ≉ y`
is equivalent to `!isapprox(x,y)`.
```jldoctest
julia> 0.1 ≈ (0.1 - 1e-10)
true
julia> isapprox(10, 11; atol = 2)
true
julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])
true
```
"""
function isapprox(x::Number, y::Number; rtol::Real=rtoldefault(x,y), atol::Real=0, nans::Bool=false)
x == y || (isfinite(x) && isfinite(y) && abs(x-y) <= atol + rtol*max(abs(x), abs(y))) || (nans && isnan(x) && isnan(y))
end
const ≈ = isapprox
≉(args...; kws...) = !≈(args...; kws...)
# default tolerance arguments
rtoldefault(::Type{T}) where {T<:AbstractFloat} = sqrt(eps(T))
rtoldefault(::Type{<:Real}) = 0
rtoldefault(x::Union{T,Type{T}}, y::Union{S,Type{S}}) where {T<:Number,S<:Number} = max(rtoldefault(real(T)),rtoldefault(real(S)))
# fused multiply-add
fma_libm(x::Float32, y::Float32, z::Float32) =
ccall(("fmaf", libm_name), Float32, (Float32,Float32,Float32), x, y, z)
fma_libm(x::Float64, y::Float64, z::Float64) =
ccall(("fma", libm_name), Float64, (Float64,Float64,Float64), x, y, z)
fma_llvm(x::Float32, y::Float32, z::Float32) = fma_float(x, y, z)
fma_llvm(x::Float64, y::Float64, z::Float64) = fma_float(x, y, z)
# Disable LLVM's fma if it is incorrect, e.g. because LLVM falls back
# onto a broken system libm; if so, use openlibm's fma instead
# 1.0000305f0 = 1 + 1/2^15
# 1.0000000009313226 = 1 + 1/2^30
# If fma_llvm() clobbers the rounding mode, the result of 0.1 + 0.2 will be 0.3
# instead of the properly-rounded 0.30000000000000004; check after calling fma
if (Sys.ARCH != :i686 && fma_llvm(1.0000305f0, 1.0000305f0, -1.0f0) == 6.103609f-5 &&
(fma_llvm(1.0000000009313226, 1.0000000009313226, -1.0) ==
1.8626451500983188e-9) && 0.1 + 0.2 == 0.30000000000000004)
fma(x::Float32, y::Float32, z::Float32) = fma_llvm(x,y,z)
fma(x::Float64, y::Float64, z::Float64) = fma_llvm(x,y,z)
else
fma(x::Float32, y::Float32, z::Float32) = fma_libm(x,y,z)
fma(x::Float64, y::Float64, z::Float64) = fma_libm(x,y,z)
end
function fma(a::Float16, b::Float16, c::Float16)
Float16(fma(Float32(a), Float32(b), Float32(c)))
end
# This is necessary at least on 32-bit Intel Linux, since fma_llvm may
# have called glibc, and some broken glibc fma implementations don't
# properly restore the rounding mode
Rounding.setrounding_raw(Float32, Rounding.JL_FE_TONEAREST)
Rounding.setrounding_raw(Float64, Rounding.JL_FE_TONEAREST)