-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
sorting.jl
407 lines (354 loc) · 14.4 KB
/
sorting.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# This file is a part of Julia. License is MIT: https://julialang.org/license
module SortingTests
using Base.Order: Forward
using Random
using Test
@test sort([2,3,1]) == [1,2,3]
@test sort([2,3,1], rev=true) == [3,2,1]
@test sort(['z':-1:'a';]) == ['a':'z';]
@test sort(['a':'z';], rev=true) == ['z':-1:'a';]
@test sortperm([2,3,1]) == [3,1,2]
@test sortperm!([1,2,3], [2,3,1]) == [3,1,2]
let s = view([1,2,3,4], 1:3),
r = sortperm!(s, [2,3,1])
@test r == [3,1,2]
@test r === s
end
@test_throws ArgumentError sortperm!(view([1,2,3,4], 1:4), [2,3,1])
@test !issorted([2,3,1])
@test issorted([1,2,3])
@test reverse([2,3,1]) == [1,3,2]
@test partialsort([3,6,30,1,9],3) == 6
@test partialsort([3,6,30,1,9],3:4) == [6,9]
@test partialsortperm([3,6,30,1,9], 3:4) == [2,5]
@test partialsortperm!(Vector(1:5), [3,6,30,1,9], 3:4) == [2,5]
let a=[1:10;]
for r in Any[2:4, 1:2, 10:10, 4:2, 2:1, 4:-1:2, 2:-1:1, 10:-1:10, 4:1:3, 1:2:8, 10:-3:1]
@test partialsort(a, r) == [r;]
@test partialsortperm(a, r) == [r;]
@test partialsort(a, r, rev=true) == (11 .- [r;])
@test partialsortperm(a, r, rev=true) == (11 .- [r;])
end
end
@test sum(randperm(6)) == 21
# Compare ranges by comparing their `first` and `last` elements and their `length`. This
# returns `false` if empty ranges have different startpoints, which is relevant for
# `searchsorted`
==ᵣ(r::AbstractRange, s::AbstractRange) =
(first(r) == first(s)) & (length(r) == length(s)) & (last(r) == last(s))
@testset "searchsorted" begin
numTypes = [ Int8, Int16, Int32, Int64, Int128,
UInt8, UInt16, UInt32, UInt64, UInt128,
Float16, Float32, Float64, BigInt, BigFloat]
@test searchsorted([1:10;], 1, by=(x -> x >= 5)) == 1:4
@test searchsorted([1:10;], 10, by=(x -> x >= 5)) == 5:10
@test searchsorted([1:5; 1:5; 1:5], 1, 6, 10, Forward) == 6:6
@test searchsorted(fill(1, 15), 1, 6, 10, Forward) == 6:10
for R in numTypes, T in numTypes
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(0)) === 1:0
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(1)) == 1:2
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(2)) == 3:4
@test searchsorted(R[1, 1, 2, 2, 3, 3], T(4)) === 7:6
@test searchsorted(R[1, 1, 2, 2, 3, 3], 2.5) === 5:4
@test searchsorted(1:3, T(0)) ==ᵣ 1:0
@test searchsorted(1:3, T(1)) == 1:1
@test searchsorted(1:3, T(2)) == 2:2
@test searchsorted(1:3, T(4)) ==ᵣ 4:3
@test searchsorted(R[1:10;], T(1), by=(x -> x >= 5)) == 1:4
@test searchsorted(R[1:10;], T(10), by=(x -> x >= 5)) == 5:10
@test searchsorted(R[1:5; 1:5; 1:5], T(1), 6, 10, Forward) == 6:6
@test searchsorted(fill(R(1), 15), T(1), 6, 10, Forward) == 6:10
end
for (rg,I) in [(49:57,47:59), (1:2:17,-1:19), (-3:0.5:2,-5:.5:4)]
rg_r = reverse(rg)
rgv, rgv_r = [rg;], [rg_r;]
for i = I
@test searchsorted(rg,i) === searchsorted(rgv,i)
@test searchsorted(rg_r,i,rev=true) === searchsorted(rgv_r,i,rev=true)
end
end
rg = 0.0:0.01:1.0
for i = 2:101
@test searchsorted(rg, rg[i]) == i:i
@test searchsorted(rg, prevfloat(rg[i])) === i:i-1
@test searchsorted(rg, nextfloat(rg[i])) === i+1:i
end
rg_r = reverse(rg)
for i = 1:100
@test searchsorted(rg_r, rg_r[i], rev=true) == i:i
@test searchsorted(rg_r, prevfloat(rg_r[i]), rev=true) === i+1:i
@test searchsorted(rg_r, nextfloat(rg_r[i]), rev=true) === i:i-1
end
@test searchsorted(1:10, 1, by=(x -> x >= 5)) == searchsorted([1:10;], 1, by=(x -> x >= 5))
@test searchsorted(1:10, 10, by=(x -> x >= 5)) == searchsorted([1:10;], 10, by=(x -> x >= 5))
@test searchsorted([], 0) === 1:0
@test searchsorted([1,2,3], 0) === 1:0
@test searchsorted([1,2,3], 4) === 4:3
@testset "issue 8866" begin
@test searchsortedfirst(500:1.0:600, -1.0e20) == 1
@test searchsortedfirst(500:1.0:600, 1.0e20) == 102
@test searchsortedlast(500:1.0:600, -1.0e20) == 0
@test searchsortedlast(500:1.0:600, 1.0e20) == 101
end
end
# exercise the codepath in searchsorted* methods for ranges that check for zero step range
struct ConstantRange{T} <: AbstractRange{T}
val::T
len::Int
end
Base.length(r::ConstantRange) = r.len
Base.getindex(r::ConstantRange, i::Int) = (1 <= i <= r.len || throw(BoundsError(r,i)); r.val)
Base.step(r::ConstantRange) = 0
@testset "searchsorted method with ranges which check for zero step range" begin
r = ConstantRange(1, 5)
@test searchsortedfirst(r, 1.0, Forward) == 1
@test searchsortedfirst(r, 1, Forward) == 1
@test searchsortedfirst(r, UInt(1), Forward) == 1
@test searchsortedlast(r, 1.0, Forward) == 5
@test searchsortedlast(r, 1, Forward) == 5
@test searchsortedlast(r, UInt(1), Forward) == 5
a = rand(1:10000, 1000)
for alg in [InsertionSort, MergeSort]
b = sort(a, alg=alg)
@test issorted(b)
ix = sortperm(a, alg=alg)
b = a[ix]
@test issorted(b)
@test a[ix] == b
sortperm!(view(ix, 1:100), view(a, 1:100), alg=alg)
b = a[ix][1:100]
@test issorted(b)
sortperm!(ix, a, alg=alg)
b = a[ix]
@test issorted(b)
@test a[ix] == b
b = sort(a, alg=alg, rev=true)
@test issorted(b, rev=true)
ix = sortperm(a, alg=alg, rev=true)
b = a[ix]
@test issorted(b, rev=true)
@test a[ix] == b
sortperm!(view(ix, 1:100), view(a, 1:100), alg=alg, rev=true)
b = a[ix][1:100]
@test issorted(b, rev=true)
sortperm!(ix, a, alg=alg, rev=true)
b = a[ix]
@test issorted(b, rev=true)
@test a[ix] == b
b = sort(a, alg=alg, by=x->1/x)
@test issorted(b, by=x->1/x)
ix = sortperm(a, alg=alg, by=x->1/x)
b = a[ix]
@test issorted(b, by=x->1/x)
@test a[ix] == b
sortperm!(view(ix, 1:100), view(a, 1:100), by=x->1/x)
b = a[ix][1:100]
@test issorted(b, by=x->1/x)
sortperm!(ix, a, alg=alg, by=x->1/x)
b = a[ix]
@test issorted(b, by=x->1/x)
@test a[ix] == b
c = copy(a)
permute!(c, ix)
@test c == b
invpermute!(c, ix)
@test c == a
c = sort(a, alg=alg, lt=(>))
@test b == c
c = sort(a, alg=alg, by=x->1/x)
@test b == c
end
@testset "unstable algorithms" begin
for alg in [QuickSort, PartialQuickSort(length(a))]
b = sort(a, alg=alg)
@test issorted(b)
b = sort(a, alg=alg, rev=true)
@test issorted(b, rev=true)
b = sort(a, alg=alg, by=x->1/x)
@test issorted(b, by=x->1/x)
end
end
end
@testset "PartialQuickSort" begin
a = rand(1:10000, 1000)
# test PartialQuickSort only does a partial sort
let alg = PartialQuickSort(div(length(a), 10))
k = alg.k
b = sort(a, alg=alg)
c = sort(a, alg=alg, by=x->1/x)
d = sort(a, alg=alg, rev=true)
@test issorted(b[1:k])
@test issorted(c[1:k], by=x->1/x)
@test issorted(d[1:k], rev=true)
@test !issorted(b)
@test !issorted(c, by=x->1/x)
@test !issorted(d, rev=true)
end
@test partialsort([3,6,30,1,9], 2, rev=true) == 9
@test partialsort([3,6,30,1,9], 2, by=x->1/x) == 9
@test partialsortperm([3,6,30,1,9], 2, rev=true) == 5
@test partialsortperm([3,6,30,1,9], 2, by=x->1/x) == 5
end
## more advanced sorting tests ##
randnans(n) = reinterpret(Float64,[rand(UInt64)|0x7ff8000000000000 for i=1:n])
function randn_with_nans(n,p)
v = randn(n)
x = findall(rand(n).<p)
v[x] = randnans(length(x))
return v
end
@testset "advanced sorting" begin
Random.seed!(0xdeadbeef)
for n in [0:10; 100; 101; 1000; 1001]
local r
r = -5:5
v = rand(r,n)
h = [sum(v .== x) for x in r]
for rev in [false,true]
# insertion sort (stable) as reference
pi = sortperm(v, alg=InsertionSort, rev=rev)
@test pi == sortperm(float(v), alg=InsertionSort, rev=rev)
@test isperm(pi)
si = v[pi]
@test [sum(si .== x) for x in r] == h
@test issorted(si, rev=rev)
@test all(issorted,[pi[si.==x] for x in r])
c = copy(v)
permute!(c, pi)
@test c == si
invpermute!(c, pi)
@test c == v
# stable algorithms
for alg in [MergeSort]
p = sortperm(v, alg=alg, rev=rev)
@test p == sortperm(float(v), alg=alg, rev=rev)
@test p == pi
s = copy(v)
permute!(s, p)
@test s == si
invpermute!(s, p)
@test s == v
end
# unstable algorithms
for alg in [QuickSort, PartialQuickSort(n)]
p = sortperm(v, alg=alg, rev=rev)
@test p == sortperm(float(v), alg=alg, rev=rev)
@test isperm(p)
@test v[p] == si
s = copy(v)
permute!(s, p)
@test s == si
invpermute!(s, p)
@test s == v
end
end
v = randn_with_nans(n,0.1)
# TODO: alg = PartialQuickSort(n) fails here
for alg in [InsertionSort, QuickSort, MergeSort],
rev in [false,true]
# test float sorting with NaNs
s = sort(v, alg=alg, rev=rev)
@test issorted(s, rev=rev)
@test reinterpret(UInt64,v[isnan.(v)]) == reinterpret(UInt64,s[isnan.(s)])
# test float permutation with NaNs
p = sortperm(v, alg=alg, rev=rev)
@test isperm(p)
vp = v[p]
@test isequal(vp,s)
@test reinterpret(UInt64,vp) == reinterpret(UInt64,s)
end
end
end
@testset "sortperm" begin
inds = [
1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,
10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,
16,17,17,17,18,18,18,19,19,19,20,20,20,21,21,22,22,22,23,
23,24,24,24,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,
30,30,30,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,
36,37,37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,42,42,
43,43,43,44,44,44,45,45,45,46,46,46,47,47,47,48,48,48,49,
49,49,50,50,50,51,51,52,52,52,53,53,53,54,54,54,55,55,55,
56,56,56,57,57,57,58,58,58,59,60,60,60,61,61,61,62,62,63,
64,64,64,65,65,65,66,66,66,67,67,67,68,68,69,69,69,70,70,
70,71,71,71,72,72,72,73,73,73,74,75,75,75,76,76,76,77,77,
77,78,78,78,79,79,79,80,80,80,81,81,82,82,82,83,83,83,84,
84,84,85,85,85,86,86,86,87,87,87,88,88,88,89,89,89,90,90,
90,91,91,91,92,92,93,93,93,94,94,94,95,95,95,96,96,96,97,
97,98,98,98,99,99,99,100,100,100,101,101,101,102,102,102,
103,103,103,104,105,105,105,106,106,106,107,107,107,108,
108,108,109,109,109,110,110,110,111,111,111,112,112,112,
113,113,113,114,114,115,115,115,116,116,116,117,117,117,
118,118,118,119,119,119,120,120,120,121,121,121,122,122,
122,123,123,123,124,124,124,125,125,125,126,126,126,127,
127,127,128,128,128,129,129,129,130,130,130,131,131,131,
132,132,132,133,133,133,134,134,134,135,135,135,136,136,
136,137,137,137,138,138,138,139,139,139,140,140,140,141,
141,142,142,142,143,143,143,144,144,144,145,145,145,146,
146,146,147,147,147,148,148,148,149,149,149,150,150,150,
151,151,151,152,152,152,153,153,153,154,154,154,155,155,
155,156,156,156,157,157,157,158,158,158,159,159,159,160,
160,160,161,161,161,162,162,162,163,163,163,164,164,164,
165,165,165,166,166,166,167,167,167,168,168,168,169,169,
169,170,170,170,171,171,171,172,172,172,173,173,173,174,
174,174,175,175,175,176,176,176,177,177,177,178,178,178,
179,179,179,180,180,180,181,181,181,182,182,182,183,183,
183,184,184,184,185,185,185,186,186,186,187,187,187,188,
188,188,189,189,189,190,190,190,191,191,191,192,192,192,
193,193,193,194,194,194,195,195,195,196,196,197,197,197,
198,198,198,199,199,199,200,200,200
]
let sp = sortperm(inds)
@test all(issorted, [sp[inds.==x] for x in 1:200])
end
for alg in [InsertionSort, MergeSort]
sp = sortperm(inds, alg=alg)
@test all(issorted, [sp[inds.==x] for x in 1:200])
end
end
@testset "issue #6177" begin
@test sortperm([ 0.0, 1.0, 1.0], rev=true) == [2, 3, 1]
@test sortperm([-0.0, 1.0, 1.0], rev=true) == [2, 3, 1]
@test sortperm([-1.0, 1.0, 1.0], rev=true) == [2, 3, 1]
end
# issue #8825 - stability of min/max
mutable struct Twain
a :: Int
b :: Int
end
Base.isless(x :: Twain, y :: Twain) = x.a < y.a
let x = Twain(2,3), y = Twain(2,4)
@test (min(x,y), max(x,y)) == (x,y) == minmax(x,y)
end
# issue #12833 - type stability of sort
@test Base.return_types(sort, (Vector{Int},)) == [Vector{Int}]
@testset "PR #18791" begin
@test sort([typemax(Int),typemin(Int)]) == [typemin(Int),typemax(Int)]
@test sort([typemax(UInt),0]) == [0,typemax(UInt)]
end
@testset "issue #19005" begin
@test searchsortedfirst(0:256, 0x80) == 129
@test searchsortedlast(0:256, 0x80) == 129
end
# https://discourse.julialang.org/t/sorting-big-int-with-v-0-6/1241
@test sort([big(3), big(2)]) == [big(2), big(3)]
@testset "issue #30763" begin
for T in [:Int8, :Int16, :Int32, :Int64, :Int128, :UInt8, :UInt16, :UInt32, :UInt64, :UInt128]
@eval begin
struct T_30763{T}
n::T
end
Base.zero(::T_30763{$T}) = T_30763{$T}(0)
Base.convert(::Type{T_30763{$T}}, n::Integer) = T_30763{$T}($T(n))
Base.isless(a::T_30763{$T}, b::T_30763{$T}) = isless(a.n, b.n)
Base.:(-)(a::T_30763{$T}, b::T_30763{$T}) = T_30763{$T}(a.n - b.n)
Base.:(+)(a::T_30763{$T}, b::T_30763{$T}) = T_30763{$T}(a.n + b.n)
Base.:(*)(n::Integer, a::T_30763{$T}) = T_30763{$T}(n * a.n)
Base.rem(a::T_30763{$T}, b::T_30763{$T}) = T_30763{$T}(rem(a.n, b.n))
# The important part of this test is that the return type of length might be different from Int
Base.length(r::StepRange{T_30763{$T},T_30763{$T}}) = $T((last(r).n - first(r).n) ÷ step(r).n)
@test searchsorted(T_30763{$T}(1):T_30763{$T}(3), T_30763{$T}(2)) == 2:2
end
end
end
end