-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
passes.jl
1291 lines (1212 loc) · 51.4 KB
/
passes.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
"""
This struct keeps track of all uses of some mutable struct allocated
in the current function. `uses` are all instances of `getfield` on the
struct. `defs` are all instances of `setfield!` on the struct. The terminology
refers to the uses/defs of the ``slot bundle'' that the mutable struct represents.
In addition we keep track of all instances of a foreigncall preserve of this mutable
struct. Somewhat counterintuitively, we don't actually need to make sure that the
struct itself is live (or even allocated) at a ccall site. If there are no other places
where the struct escapes (and thus e.g. where its address is taken), it need not be
allocated. We do however, need to make sure to preserve any elements of this struct.
"""
struct SSADefUse
uses::Vector{Int}
defs::Vector{Int}
ccall_preserve_uses::Vector{Int}
end
SSADefUse() = SSADefUse(Int[], Int[], Int[])
function try_compute_field_stmt(compact::IncrementalCompact, stmt::Expr)
field = stmt.args[3]
# fields are usually literals, handle them manually
if isa(field, QuoteNode)
field = field.value
elseif isa(field, Int)
# try to resolve other constants, e.g. global reference
else
field = compact_exprtype(compact, field)
if isa(field, Const)
field = field.val
else
return nothing
end
end
isa(field, Union{Int, Symbol}) || return nothing
return field
end
function try_compute_fieldidx_stmt(compact::IncrementalCompact, stmt::Expr, typ::DataType)
field = try_compute_field_stmt(compact, stmt)
return try_compute_fieldidx(typ, field)
end
function find_curblock(domtree::DomTree, allblocks::Vector{Int}, curblock::Int)
# TODO: This can be much faster by looking at current level and only
# searching for those blocks in a sorted order
while !(curblock in allblocks)
curblock = domtree.idoms_bb[curblock]
end
return curblock
end
function val_for_def_expr(ir::IRCode, def::Int, fidx::Int)
ex = ir[SSAValue(def)]
if isexpr(ex, :new)
return ex.args[1+fidx]
else
@assert isa(ex, Expr)
# The use is whatever the setfield was
return ex.args[4]
end
end
function compute_value_for_block(ir::IRCode, domtree::DomTree, allblocks::Vector{Int}, du::SSADefUse, phinodes::IdDict{Int, SSAValue}, fidx::Int, curblock::Int)
curblock = find_curblock(domtree, allblocks, curblock)
def = 0
for stmt in du.defs
if block_for_inst(ir.cfg, stmt) == curblock
def = max(def, stmt)
end
end
def == 0 ? phinodes[curblock] : val_for_def_expr(ir, def, fidx)
end
function compute_value_for_use(ir::IRCode, domtree::DomTree, allblocks::Vector{Int}, du::SSADefUse, phinodes::IdDict{Int, SSAValue}, fidx::Int, use_idx::Int)
def, stmtblock, curblock = find_def_for_use(ir, domtree, allblocks, du, use_idx)
if def == 0
if !haskey(phinodes, curblock)
# If this happens, we need to search the predecessors for defs. Which
# one doesn't matter - if it did, we'd have had a phinode
return compute_value_for_block(ir, domtree, allblocks, du, phinodes, fidx, first(ir.cfg.blocks[stmtblock].preds))
end
# The use is the phinode
return phinodes[curblock]
else
return val_for_def_expr(ir, def, fidx)
end
end
# find the first dominating def for the given use
function find_def_for_use(ir::IRCode, domtree::DomTree, allblocks::Vector{Int}, du::SSADefUse, use_idx::Int)
stmtblock = block_for_inst(ir.cfg, use_idx)
curblock = find_curblock(domtree, allblocks, stmtblock)
local def = 0
for idx in du.defs
if block_for_inst(ir.cfg, idx) == curblock
if curblock != stmtblock
# Find the last def in this block
def = max(def, idx)
else
# Find the last def before our use
def = max(def, idx >= use_idx ? 0 : idx)
end
end
end
return def, stmtblock, curblock
end
function simple_walk(compact::IncrementalCompact, @nospecialize(defssa#=::AnySSAValue=#),
callback = (@nospecialize(pi), @nospecialize(idx)) -> false)
while true
if isa(defssa, OldSSAValue)
if already_inserted(compact, defssa)
rename = compact.ssa_rename[defssa.id]
if isa(rename, AnySSAValue)
defssa = rename
continue
end
return rename
end
end
def = compact[defssa]
if isa(def, PiNode)
if callback(def, defssa)
return defssa
end
def = def.val
if isa(def, SSAValue)
is_old(compact, defssa) && (def = OldSSAValue(def.id))
else
return def
end
defssa = def
elseif isa(def, AnySSAValue)
callback(def, defssa)
if isa(def, SSAValue)
is_old(compact, defssa) && (def = OldSSAValue(def.id))
end
defssa = def
elseif isa(def, Union{PhiNode, PhiCNode, Expr, GlobalRef})
return defssa
else
return def
end
end
end
function simple_walk_constraint(compact::IncrementalCompact, @nospecialize(defssa#=::AnySSAValue=#),
@nospecialize(typeconstraint) = types(compact)[defssa])
callback = function (@nospecialize(pi), @nospecialize(idx))
if isa(pi, PiNode)
typeconstraint = typeintersect(typeconstraint, widenconst(pi.typ))
end
return false
end
def = simple_walk(compact, defssa, callback)
return Pair{Any, Any}(def, typeconstraint)
end
"""
walk_to_defs(compact, val, intermediaries)
Starting at `val` walk use-def chains to get all the leaves feeding into
this val (pruning those leaves rules out by path conditions).
"""
function walk_to_defs(compact::IncrementalCompact, @nospecialize(defssa), @nospecialize(typeconstraint), visited_phinodes::Vector{Any}=Any[])
isa(defssa, AnySSAValue) || return Any[defssa]
def = compact[defssa]
isa(def, PhiNode) || return Any[defssa]
# Step 2: Figure out what the struct is defined as
## Track definitions through PiNode/PhiNode
found_def = false
## Track which PhiNodes, SSAValue intermediaries
## we forwarded through.
visited = IdDict{Any, Any}()
worklist_defs = Any[]
worklist_constraints = Any[]
leaves = Any[]
push!(worklist_defs, defssa)
push!(worklist_constraints, typeconstraint)
while !isempty(worklist_defs)
defssa = pop!(worklist_defs)
typeconstraint = pop!(worklist_constraints)
visited[defssa] = typeconstraint
def = compact[defssa]
if isa(def, PhiNode)
push!(visited_phinodes, defssa)
possible_predecessors = Int[]
for n in 1:length(def.edges)
isassigned(def.values, n) || continue
val = def.values[n]
if is_old(compact, defssa) && isa(val, SSAValue)
val = OldSSAValue(val.id)
end
edge_typ = widenconst(compact_exprtype(compact, val))
hasintersect(edge_typ, typeconstraint) || continue
push!(possible_predecessors, n)
end
for n in possible_predecessors
pred = def.edges[n]
val = def.values[n]
if is_old(compact, defssa) && isa(val, SSAValue)
val = OldSSAValue(val.id)
end
if isa(val, AnySSAValue)
new_def, new_constraint = simple_walk_constraint(compact, val, typeconstraint)
if isa(new_def, AnySSAValue)
if !haskey(visited, new_def)
push!(worklist_defs, new_def)
push!(worklist_constraints, new_constraint)
elseif !(new_constraint <: visited[new_def])
# We have reached the same definition via a different
# path, with a different type constraint. We may have
# to redo some work here with the wider typeconstraint
push!(worklist_defs, new_def)
push!(worklist_constraints, tmerge(new_constraint, visited[new_def]))
end
continue
end
val = new_def
end
if def === val
# This shouldn't really ever happen, but
# patterns like this can occur in dead code,
# so bail out.
break
else
push!(leaves, val)
end
continue
end
else
push!(leaves, defssa)
end
end
leaves
end
function process_immutable_preserve(new_preserves::Vector{Any}, compact::IncrementalCompact, def::Expr)
for arg in (isexpr(def, :new) ? def.args : def.args[2:end])
if !isbitstype(widenconst(compact_exprtype(compact, arg)))
push!(new_preserves, arg)
end
end
end
function already_inserted(compact::IncrementalCompact, old::OldSSAValue)
id = old.id
if id < length(compact.ir.stmts)
return id < compact.idx
end
id -= length(compact.ir.stmts)
if id < length(compact.ir.new_nodes)
error("")
end
id -= length(compact.ir.new_nodes)
@assert id <= length(compact.pending_nodes)
return !(id in compact.pending_perm)
end
function is_pending(compact::IncrementalCompact, old::OldSSAValue)
return old.id > length(compact.ir.stmts) + length(compact.ir.new_nodes)
end
function is_getfield_captures(@nospecialize(def), compact::IncrementalCompact)
isa(def, Expr) || return false
length(def.args) >= 3 || return false
is_known_call(def, getfield, compact) || return false
which = compact_exprtype(compact, def.args[3])
isa(which, Const) || return false
which.val === :captures || return false
oc = compact_exprtype(compact, def.args[2])
return oc ⊑ Core.OpaqueClosure
end
# try to compute lifted values that can replace `getfield(x, field)` call
# where `x` is an immutable struct that are defined at any of `leaves`
function lift_leaves(compact::IncrementalCompact,
@nospecialize(result_t), field::Int, leaves::Vector{Any})
# For every leaf, the lifted value
lifted_leaves = IdDict{Any, Any}()
maybe_undef = false
for leaf in leaves
leaf_key = leaf
if isa(leaf, AnySSAValue)
function lift_arg(ref::Core.Compiler.UseRef)
lifted = ref[]
if is_old(compact, leaf) && isa(lifted, SSAValue)
lifted = OldSSAValue(lifted.id)
end
if isa(lifted, GlobalRef) || isa(lifted, Expr)
lifted = insert_node!(compact, leaf, effect_free(NewInstruction(lifted, compact_exprtype(compact, lifted))))
ref[] = lifted
(isa(leaf, SSAValue) && (leaf.id < compact.result_idx)) && push!(compact.late_fixup, leaf.id)
end
lifted_leaves[leaf_key] = RefValue{Any}(lifted)
nothing
end
function walk_leaf(@nospecialize(leaf))
if isa(leaf, OldSSAValue) && already_inserted(compact, leaf)
leaf = compact.ssa_rename[leaf.id]
if isa(leaf, AnySSAValue)
leaf = simple_walk(compact, leaf)
end
if isa(leaf, AnySSAValue)
def = compact[leaf]
else
def = leaf
end
elseif isa(leaf, AnySSAValue)
def = compact[leaf]
else
def = leaf
end
return Pair{Any, Any}(def, leaf)
end
(def, leaf) = walk_leaf(leaf)
if is_tuple_call(compact, def) && 1 <= field < length(def.args)
lift_arg(UseRef(def, 1 + field))
continue
elseif isexpr(def, :new)
typ = widenconst(types(compact)[leaf])
if isa(typ, UnionAll)
typ = unwrap_unionall(typ)
end
(isa(typ, DataType) && !isabstracttype(typ)) || return nothing
@assert !ismutabletype(typ)
if length(def.args) < 1 + field
if field > fieldcount(typ)
return nothing
end
ftyp = fieldtype(typ, field)
if !isbitstype(ftyp)
# On this branch, this will be a guaranteed UndefRefError.
# We use the regular undef mechanic to lift this to a boolean slot
maybe_undef = true
lifted_leaves[leaf_key] = nothing
continue
end
return nothing
# Expand the Expr(:new) to include it's element Expr(:new) nodes up until the one we want
compact[leaf] = nothing
for i = (length(def.args) + 1):(1+field)
ftyp = fieldtype(typ, i - 1)
isbitstype(ftyp) || return nothing
ninst = effect_free(NewInstruction(Expr(:new, ftyp), result_t))
push!(def.args, insert_node!(compact, leaf, ninst))
end
compact[leaf] = def
end
lifted = def.args[1+field]
if is_old(compact, leaf) && isa(lifted, SSAValue)
lifted = OldSSAValue(lifted.id)
end
if isa(lifted, GlobalRef) || isa(lifted, Expr)
lifted = insert_node!(compact, leaf, effect_free(NewInstruction(lifted, compact_exprtype(compact, lifted))))
def.args[1+field] = lifted
(isa(leaf, SSAValue) && (leaf.id < compact.result_idx)) && push!(compact.late_fixup, leaf.id)
end
lifted_leaves[leaf_key] = RefValue{Any}(lifted)
continue
elseif is_getfield_captures(def, compact)
# Walk to new_opaque_closure
ocleaf = def.args[2]
if isa(ocleaf, AnySSAValue)
ocleaf = simple_walk(compact, ocleaf)
end
ocdef, _ = walk_leaf(ocleaf)
if isexpr(ocdef, :new_opaque_closure) && isa(field, Int) && 1 <= field <= length(ocdef.args)-5
lift_arg(UseRef(ocdef, 5 + field))
continue
end
return nothing
else
typ = compact_exprtype(compact, leaf)
if !isa(typ, Const)
# TODO: (disabled since #27126)
# If the leaf is an old ssa value, insert a getfield here
# We will revisit this getfield later when compaction gets
# to the appropriate point.
# N.B.: This can be a bit dangerous because it can lead to
# infinite loops if we accidentally insert a node just ahead
# of where we are
return nothing
end
leaf = typ.val
# Fall through to below
end
elseif isa(leaf, QuoteNode)
leaf = leaf.value
elseif isa(leaf, GlobalRef)
mod, name = leaf.mod, leaf.name
if isdefined(mod, name) && isconst(mod, name)
leaf = getfield(mod, name)
else
return nothing
end
elseif isa(leaf, Union{Argument, Expr})
return nothing
end
ismutable(leaf) && return nothing
isdefined(leaf, field) || return nothing
val = getfield(leaf, field)
is_inlineable_constant(val) || return nothing
lifted_leaves[leaf_key] = RefValue{Any}(quoted(val))
end
return lifted_leaves, maybe_undef
end
make_MaybeUndef(@nospecialize(typ)) = isa(typ, MaybeUndef) ? typ : MaybeUndef(typ)
function lift_comparison!(compact::IncrementalCompact, idx::Int,
@nospecialize(c1), @nospecialize(c2), stmt::Expr,
lifting_cache::IdDict{Pair{AnySSAValue, Any}, AnySSAValue})
if isa(c1, Const)
cmp = c1
typeconstraint = widenconst(c2)
val = stmt.args[3]
else
cmp = c2::Const
typeconstraint = widenconst(c1)
val = stmt.args[2]
end
if isa(val, Union{OldSSAValue, SSAValue})
val, typeconstraint = simple_walk_constraint(compact, val, typeconstraint)
end
visited_phinodes = Any[]
leaves = walk_to_defs(compact, val, typeconstraint, visited_phinodes)
# Let's check if we evaluate the comparison for each one of the leaves
lifted_leaves = IdDict{Any, Any}()
for leaf in leaves
r = egal_tfunc(compact_exprtype(compact, leaf), cmp)
if isa(r, Const)
lifted_leaves[leaf] = RefValue{Any}(r.val)
else
# TODO: In some cases it might be profitable to hoist the ===
# here.
return
end
end
lifted_val = perform_lifting!(compact, visited_phinodes, cmp, lifting_cache, Bool, lifted_leaves, val)
@assert lifted_val !== nothing
# global assertion_counter
# assertion_counter::Int += 1
# insert_node_here!(compact, Expr(:assert_egal, Symbol(string("assert_egal_", assertion_counter)), SSAValue(idx), lifted_val), nothing, 0, true)
# return
compact[idx] = lifted_val.x
end
struct LiftedPhi
ssa::AnySSAValue
node::PhiNode
need_argupdate::Bool
end
function is_old(compact, @nospecialize(old_node_ssa))
isa(old_node_ssa, OldSSAValue) &&
!is_pending(compact, old_node_ssa) &&
!already_inserted(compact, old_node_ssa)
end
function perform_lifting!(compact::IncrementalCompact,
visited_phinodes::Vector{Any}, @nospecialize(cache_key),
lifting_cache::IdDict{Pair{AnySSAValue, Any}, AnySSAValue},
@nospecialize(result_t), lifted_leaves::IdDict{Any, Any}, @nospecialize(stmt_val))
reverse_mapping = IdDict{Any, Any}(ssa => id for (id, ssa) in enumerate(visited_phinodes))
# Insert PhiNodes
lifted_phis = LiftedPhi[]
for item in visited_phinodes
if (item, cache_key) in keys(lifting_cache)
ssa = lifting_cache[Pair{AnySSAValue, Any}(item, cache_key)]
push!(lifted_phis, LiftedPhi(ssa, compact[ssa]::PhiNode, false))
continue
end
n = PhiNode()
ssa = insert_node!(compact, item, effect_free(NewInstruction(n, result_t)))
lifting_cache[Pair{AnySSAValue, Any}(item, cache_key)] = ssa
push!(lifted_phis, LiftedPhi(ssa, n, true))
end
# Fix up arguments
for (old_node_ssa, lf) in zip(visited_phinodes, lifted_phis)
old_node = compact[old_node_ssa]::PhiNode
new_node = lf.node
lf.need_argupdate || continue
for i = 1:length(old_node.edges)
edge = old_node.edges[i]
isassigned(old_node.values, i) || continue
val = old_node.values[i]
orig_val = val
if is_old(compact, old_node_ssa) && isa(val, SSAValue)
val = OldSSAValue(val.id)
end
if isa(val, AnySSAValue)
val = simple_walk(compact, val)
end
if val in keys(lifted_leaves)
push!(new_node.edges, edge)
lifted_val = lifted_leaves[val]
if lifted_val === nothing
resize!(new_node.values, length(new_node.values)+1)
continue
end
lifted_val = lifted_val.x
if isa(lifted_val, AnySSAValue)
callback = (@nospecialize(pi), @nospecialize(idx)) -> true
lifted_val = simple_walk(compact, lifted_val, callback)
end
push!(new_node.values, lifted_val)
elseif isa(val, AnySSAValue) && val in keys(reverse_mapping)
push!(new_node.edges, edge)
push!(new_node.values, lifted_phis[reverse_mapping[val]].ssa)
else
# Probably ignored by path condition, skip this
end
end
end
for lf in lifted_phis
count_added_node!(compact, lf.node)
end
# Fixup the stmt itself
if isa(stmt_val, Union{SSAValue, OldSSAValue})
stmt_val = simple_walk(compact, stmt_val)
end
if stmt_val in keys(lifted_leaves)
stmt_val = lifted_leaves[stmt_val]
elseif isa(stmt_val, AnySSAValue) && stmt_val in keys(reverse_mapping)
stmt_val = RefValue{Any}(lifted_phis[reverse_mapping[stmt_val]].ssa)
end
return stmt_val
end
"""
sroa_pass!(ir::IRCode) -> newir::IRCode
`getfield` elimination pass, a.k.a. Scalar Replacements of Aggregates optimization.
This pass is based on a local alias analysis that collects field information by def-use chain walking.
It looks for struct allocation sites ("definitions"), and `getfield` calls as well as
`:foreigncall`s that preserve the structs ("usages"). If "definitions" have enough information,
then this pass will replace corresponding usages with lifted values.
`mutable struct`s require additional cares and need to be handled separately from immutables.
For `mutable struct`s, `setfield!` calls account for "definitions" also, and the pass should
give up the lifting conservatively when there are any "intermediate usages" that may escape
the mutable struct (e.g. non-inlined generic function call that takes the mutable struct as
its argument).
In a case when all usages are fully eliminated, `struct` allocation may also be erased as
a result of dead code elimination.
"""
function sroa_pass!(ir::IRCode)
compact = IncrementalCompact(ir)
defuses = IdDict{Int, Tuple{IdSet{Int}, SSADefUse}}()
lifting_cache = IdDict{Pair{AnySSAValue, Any}, AnySSAValue}()
for ((_, idx), stmt) in compact
isa(stmt, Expr) || continue
result_t = compact_exprtype(compact, SSAValue(idx))
is_getfield = is_setfield = false
field_ordering = :unspecified
# Step 1: Check whether the statement we're looking at is a getfield/setfield!
if is_known_call(stmt, setfield!, compact)
is_setfield = true
4 <= length(stmt.args) <= 5 || continue
if length(stmt.args) == 5
field_ordering = compact_exprtype(compact, stmt.args[5])
end
elseif is_known_call(stmt, getfield, compact)
is_getfield = true
3 <= length(stmt.args) <= 5 || continue
if length(stmt.args) == 5
field_ordering = compact_exprtype(compact, stmt.args[5])
elseif length(stmt.args) == 4
field_ordering = compact_exprtype(compact, stmt.args[4])
widenconst(field_ordering) === Bool && (field_ordering = :unspecified)
end
elseif is_known_call(stmt, isa, compact)
# TODO
continue
elseif is_known_call(stmt, typeassert, compact) && length(stmt.args) == 3
# Canonicalize
# X = typeassert(Y, T)::S
# into
# typeassert(Y, T)
# X = PiNode(Y, S)
# N.B.: Inference may have a more precise type for `S`, than
# just T, but from here on out, there's no problem with
# using just using that.
# so subsequent analysis only has to deal with the latter
# form. TODO: This isn't the best place to put this.
# Also, we should probably have a version of typeassert
# that's defined not to return its value to make life easier
# for the backend.
pi = insert_node_here!(compact,
NewInstruction(
PiNode(stmt.args[2], compact.result[idx][:type]),
compact.result[idx][:type],
compact.result[idx][:line]), true)
compact.ssa_rename[compact.idx-1] = pi
continue
elseif is_known_call(stmt, (===), compact) && length(stmt.args) == 3
c1 = compact_exprtype(compact, stmt.args[2])
c2 = compact_exprtype(compact, stmt.args[3])
if !(isa(c1, Const) || isa(c2, Const))
continue
end
(isa(c1, Const) && isa(c2, Const)) && continue
lift_comparison!(compact, idx, c1, c2, stmt, lifting_cache)
continue
elseif isexpr(stmt, :foreigncall)
nccallargs = length(stmt.args[3]::SimpleVector)
new_preserves = Any[]
old_preserves = stmt.args[(6+nccallargs):end]
for (pidx, preserved_arg) in enumerate(old_preserves)
isa(preserved_arg, SSAValue) || continue
let intermediaries = IdSet{Int}()
callback = function (@nospecialize(pi), @nospecialize(ssa))
push!(intermediaries, ssa.id)
return false
end
def = simple_walk(compact, preserved_arg, callback)
isa(def, SSAValue) || continue
defidx = def.id
def = compact[defidx]
if is_tuple_call(compact, def)
process_immutable_preserve(new_preserves, compact, def)
old_preserves[pidx] = nothing
continue
elseif isexpr(def, :new)
typ = widenconst(compact_exprtype(compact, SSAValue(defidx)))
if isa(typ, UnionAll)
typ = unwrap_unionall(typ)
end
if typ isa DataType && !ismutabletype(typ)
process_immutable_preserve(new_preserves, compact, def)
old_preserves[pidx] = nothing
continue
end
else
continue
end
mid, defuse = get!(defuses, defidx, (IdSet{Int}(), SSADefUse()))
push!(defuse.ccall_preserve_uses, idx)
union!(mid, intermediaries)
end
continue
end
if !isempty(new_preserves)
old_preserves = filter(ssa->ssa !== nothing, old_preserves)
new_expr = Expr(:foreigncall, stmt.args[1:(6+nccallargs-1)]...,
old_preserves..., new_preserves...)
compact[idx] = new_expr
end
continue
else
continue
end
field = try_compute_field_stmt(compact, stmt)
field === nothing && continue
struct_typ = unwrap_unionall(widenconst(compact_exprtype(compact, stmt.args[2])))
if isa(struct_typ, Union) && struct_typ <: Tuple
struct_typ = unswitchtupleunion(struct_typ)
end
isa(struct_typ, DataType) || continue
struct_typ.name.atomicfields == C_NULL || continue # TODO: handle more
if !(field_ordering === :unspecified || (field_ordering isa Const && field_ordering.val === :not_atomic))
continue
end
def, typeconstraint = stmt.args[2], struct_typ
if ismutabletype(struct_typ)
isa(def, SSAValue) || continue
let intermediaries = IdSet{Int}()
callback = function (@nospecialize(pi), @nospecialize(ssa))
push!(intermediaries, ssa.id)
return false
end
def = simple_walk(compact, def, callback)
# Mutable stuff here
isa(def, SSAValue) || continue
mid, defuse = get!(defuses, def.id, (IdSet{Int}(), SSADefUse()))
if is_setfield
push!(defuse.defs, idx)
else
push!(defuse.uses, idx)
end
union!(mid, intermediaries)
end
continue
elseif is_setfield
continue
end
# perform SROA on immutable structs here on
if isa(def, Union{OldSSAValue, SSAValue})
def, typeconstraint = simple_walk_constraint(compact, def, typeconstraint)
end
visited_phinodes = Any[]
leaves = walk_to_defs(compact, def, typeconstraint, visited_phinodes)
isempty(leaves) && continue
field = try_compute_fieldidx(struct_typ, field)
field === nothing && continue
r = lift_leaves(compact, result_t, field, leaves)
r === nothing && continue
lifted_leaves, any_undef = r
if any_undef
result_t = make_MaybeUndef(result_t)
end
val = perform_lifting!(compact, visited_phinodes, field, lifting_cache, result_t, lifted_leaves, stmt.args[2])
# Insert the undef check if necessary
if any_undef
if val === nothing
insert_node!(compact, SSAValue(idx),
non_effect_free(NewInstruction(Expr(:throw_undef_if_not, Symbol("##getfield##"), false), Nothing)))
else
# val must be defined
end
else
@assert val !== nothing
end
# global assertion_counter
# assertion_counter::Int += 1
# insert_node_here!(compact, Expr(:assert_egal, Symbol(string("assert_egal_", assertion_counter)), SSAValue(idx), val), nothing, 0, true)
# continue
compact[idx] = val === nothing ? nothing : val.x
end
non_dce_finish!(compact)
# Copy the use count, `simple_dce!` may modify it and for our predicate
# below we need it consistent with the state of the IR here (after tracking
# phi node arguments, but before dce).
used_ssas = copy(compact.used_ssas)
simple_dce!(compact)
ir = complete(compact)
# Compute domtree, needed below, now that we have finished compacting the
# IR. This needs to be after we iterate through the IR with
# `IncrementalCompact` because removing dead blocks can invalidate the
# domtree.
@timeit "domtree 2" domtree = construct_domtree(ir.cfg.blocks)
# Now go through any mutable structs and see which ones we can eliminate
for (idx, (intermediaries, defuse)) in defuses
intermediaries = collect(intermediaries)
# Check if there are any uses we did not account for. If so, the variable
# escapes and we cannot eliminate the allocation. This works, because we're guaranteed
# not to include any intermediaries that have dead uses. As a result, missing uses will only ever
# show up in the nuses_total count.
nleaves = length(defuse.uses) + length(defuse.defs) + length(defuse.ccall_preserve_uses)
nuses = 0
for idx in intermediaries
nuses += used_ssas[idx]
end
nuses_total = used_ssas[idx] + nuses - length(intermediaries)
nleaves == nuses_total || continue
# Find the type for this allocation
defexpr = ir[SSAValue(idx)]
isexpr(defexpr, :new) || continue
typ = ir.stmts[idx][:type]
if isa(typ, UnionAll)
typ = unwrap_unionall(typ)
end
# Could still end up here if we tried to setfield! and immutable, which would
# error at runtime, but is not illegal to have in the IR.
ismutabletype(typ) || continue
typ = typ::DataType
# Partition defuses by field
fielddefuse = SSADefUse[SSADefUse() for _ = 1:fieldcount(typ)]
for use in defuse.uses
stmt = ir[SSAValue(use)]
# We may have discovered above that this use is dead
# after the getfield elim of immutables. In that case,
# it would have been deleted. That's fine, just ignore
# the use in that case.
stmt === nothing && continue
field = try_compute_fieldidx_stmt(compact, stmt::Expr, typ)
field === nothing && @goto skip
push!(fielddefuse[field].uses, use)
end
for use in defuse.defs
field = try_compute_fieldidx_stmt(compact, ir[SSAValue(use)]::Expr, typ)
field === nothing && @goto skip
push!(fielddefuse[field].defs, use)
end
# Check that the defexpr has defined values for all the fields
# we're accessing. In the future, we may want to relax this,
# but we should come up with semantics for well defined semantics
# for uninitialized fields first.
ndefuse = length(fielddefuse)
blocks = Vector{Tuple{#=phiblocks=# Vector{Int}, #=allblocks=# Vector{Int}}}(undef, ndefuse)
for fidx in 1:ndefuse
du = fielddefuse[fidx]
isempty(du.uses) && continue
push!(du.defs, idx)
ldu = compute_live_ins(ir.cfg, du)
phiblocks = Int[]
if !isempty(ldu.live_in_bbs)
phiblocks = idf(ir.cfg, ldu, domtree)
end
allblocks = sort(vcat(phiblocks, ldu.def_bbs))
blocks[fidx] = phiblocks, allblocks
if fidx + 1 > length(defexpr.args)
# even if the allocation contains an uninitialized field, we try an extra effort
# to check if all uses have any "solid" `setfield!` calls that define the field
# although we give up the cases below:
# `def == idx`: this field can only defined at the allocation site (thus this case will throw)
# `def == 0`: this field comes from `PhiNode`
# we may be able to traverse control flows of PhiNode values, but it sounds
# more complicated than beneficial under the current implementation
for use in du.uses
def = find_def_for_use(ir, domtree, allblocks, du, use)[1]
(def == 0 || def == idx) && @goto skip
end
end
end
preserve_uses = IdDict{Int, Vector{Any}}((idx=>Any[] for idx in IdSet{Int}(defuse.ccall_preserve_uses)))
# Everything accounted for. Go field by field and perform idf
for fidx in 1:ndefuse
du = fielddefuse[fidx]
ftyp = fieldtype(typ, fidx)
if !isempty(du.uses)
phiblocks, allblocks = blocks[fidx]
phinodes = IdDict{Int, SSAValue}()
for b in phiblocks
n = PhiNode()
phinodes[b] = insert_node!(ir, first(ir.cfg.blocks[b].stmts),
NewInstruction(n, ftyp))
end
# Now go through all uses and rewrite them
for stmt in du.uses
ir[SSAValue(stmt)] = compute_value_for_use(ir, domtree, allblocks, du, phinodes, fidx, stmt)
end
if !isbitstype(ftyp)
for (use, list) in preserve_uses
push!(list, compute_value_for_use(ir, domtree, allblocks, du, phinodes, fidx, use))
end
end
for b in phiblocks
for p in ir.cfg.blocks[b].preds
n = ir[phinodes[b]]::PhiNode
push!(n.edges, p)
push!(n.values, compute_value_for_block(ir, domtree,
allblocks, du, phinodes, fidx, p))
end
end
end
for stmt in du.defs
stmt == idx && continue
ir[SSAValue(stmt)] = nothing
end
end
isempty(defuse.ccall_preserve_uses) && continue
push!(intermediaries, idx)
# Insert the new preserves
for (use, new_preserves) in preserve_uses
useexpr = ir[SSAValue(use)]::Expr
nccallargs = length(useexpr.args[3]::SimpleVector)
old_preserves = let intermediaries = intermediaries
filter(ssa->!isa(ssa, SSAValue) || !(ssa.id in intermediaries), useexpr.args[(6+nccallargs):end])
end
new_expr = Expr(:foreigncall, useexpr.args[1:(6+nccallargs-1)]...,
old_preserves..., new_preserves...)
ir[SSAValue(use)] = new_expr
end
@label skip
end
return ir
end
# assertion_counter = 0
function adce_erase!(phi_uses::Vector{Int}, extra_worklist::Vector{Int}, compact::IncrementalCompact, idx::Int)
# return whether this made a change
if isa(compact.result[idx][:inst], PhiNode)
return maybe_erase_unused!(extra_worklist, compact, idx, val::SSAValue -> phi_uses[val.id] -= 1)
else
return maybe_erase_unused!(extra_worklist, compact, idx)
end
end
function count_uses(@nospecialize(stmt), uses::Vector{Int})
for ur in userefs(stmt)
use = ur[]
if isa(use, SSAValue)
uses[use.id] += 1
end
end
end
function mark_phi_cycles!(compact::IncrementalCompact, safe_phis::BitSet, phi::Int)
worklist = Int[]
push!(worklist, phi)
while !isempty(worklist)
phi = pop!(worklist)
push!(safe_phis, phi)
for ur in userefs(compact.result[phi][:inst])
val = ur[]
isa(val, SSAValue) || continue
isa(compact[val], PhiNode) || continue
(val.id in safe_phis) && continue
push!(worklist, val.id)
end
end
end
"""
adce_pass!(ir::IRCode) -> newir::IRCode
Aggressive Dead Code Elimination pass.
In addition to a simple DCE for unused values and allocations,
this pass also nullifies `typeassert` calls that can be proved to be no-op,
in order to allow LLVM to emit simpler code down the road.
Note that this pass is more effective after SROA optimization (i.e. `sroa_pass!`),
since SROA often allows this pass to:
- eliminate allocation of object whose field references are all replaced with scalar values, and
- nullify `typeassert` call whose first operand has been replaced with a scalar value
(, which may have introduced new type information that inference did not understand)
Also note that currently this pass _needs_ to run after `sroa_pass!`, because
the `typeassert` elimination depends on the transformation within `sroa_pass!`
which redirects references of `typeassert`ed value to the corresponding `PiNode`.
"""
function adce_pass!(ir::IRCode)
phi_uses = fill(0, length(ir.stmts) + length(ir.new_nodes))
all_phis = Int[]
compact = IncrementalCompact(ir)
for ((_, idx), stmt) in compact
if isa(stmt, PhiNode)
push!(all_phis, idx)
elseif isexpr(stmt, :call)
# nullify safe `typeassert` calls
if is_known_call(stmt, typeassert, compact) && length(stmt.args) == 3
ty, isexact = instanceof_tfunc(compact_exprtype(compact, stmt.args[3]))
if isexact && compact_exprtype(compact, stmt.args[2]) ⊑ ty
compact[idx] = nothing
end
end
end
end
non_dce_finish!(compact)
for phi in all_phis
count_uses(compact.result[phi][:inst]::PhiNode, phi_uses)
end
# Perform simple DCE for unused values
extra_worklist = Int[]
for (idx, nused) in Iterators.enumerate(compact.used_ssas)
idx >= compact.result_idx && break
nused == 0 || continue
adce_erase!(phi_uses, extra_worklist, compact, idx)
end
while !isempty(extra_worklist)
adce_erase!(phi_uses, extra_worklist, compact, pop!(extra_worklist))
end
# Go back and erase any phi cycles
changed = true
while changed
changed = false
safe_phis = BitSet()
for phi in all_phis
# Save any phi cycles that have non-phi uses
if compact.used_ssas[phi] - phi_uses[phi] != 0
mark_phi_cycles!(compact, safe_phis, phi)
end
end
for phi in all_phis
if !(phi in safe_phis)
push!(extra_worklist, phi)
end
end
while !isempty(extra_worklist)
if adce_erase!(phi_uses, extra_worklist, compact, pop!(extra_worklist))
changed = true
end
end