-
Notifications
You must be signed in to change notification settings - Fork 47
/
differences.jl
401 lines (309 loc) · 11.3 KB
/
differences.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# Define an abstract type to represent color difference metrics
abstract type DifferenceMetric end
abstract type EuclideanDifferenceMetric{T<:Color3} <: DifferenceMetric end
# TODO?: make the DifferenMetrics parametric, to preserve type-stability
struct DE_2000 <: DifferenceMetric
kl::Float64
kc::Float64
kh::Float64
DE_2000(kl=1, kc=1, kh=1) = new(kl, kc, kh)
end
"""
DE_2000(kl=1, kc=1, kh=1)
Construct a metric of the CIE Delta E 2000 recommendation, with weighting
parameters `kl`, `kc` and `kh` as provided for in the recommendation. When not
provided, these parameters default to `1`.
"""
DE_2000()
struct DE_94 <: DifferenceMetric
kl::Float64
kc::Float64
kh::Float64
k1::Float64
k2::Float64
DE_94(kl=1, kc=1, kh=1, k1=0.045, k2=0.015) = new(kl, kc, kh, k1, k2)
end
"""
DE_94(kl=1, kc=1, kh=1, k1=0.045, k2=0.015)
Construct a metric of CIE Delta E 94 recommendation (1994), with weighting
parameters `kl`, `kc`, `kh`, `k1`, and `k2` as provided for in the
recommendation. The `kl`, `k1`, and `k2` depend on the application:
| |Graphic Arts|Textiles|
|:--:|:-----------|:-------|
|`kl`|`1` |`2` |
|`k1`|`0.045` |`0.048` |
|`k2`|`0.015` |`0.014` |
and the default values are for graphic arts. The `kc` and `kh` default to `1`.
The `DE_94` is more perceptually uniform than the [`DE_AB`](@ref), but has some
non-uniformities resolved by the [`DE_2000`](@ref).
!!! note
The `DE_94` is a quasimetric, i.e. violates symmetry. Therefore,
`colordiff(a, b, metric=DE_94())` may not equal to
`colordiff(b, a, metric=DE_94())`.
The first argument of `colordiff` is taken as the reference (standard)
color.
"""
DE_94()
struct DE_JPC79 <: DifferenceMetric
end
"""
DE_JPC79()
Construct a metric using McDonald's "JP Coates Thread Company" color difference
formula.
"""
DE_JPC79()
struct DE_CMC <: DifferenceMetric
kl::Float64
kc::Float64
DE_CMC(kl=1, kc=1) = new(kl, kc)
end
"""
DE_CMC(kl=1, kc=1)
Construct a metric using the CMC equation (CMC l:c), with weighting parameters
`kl` and `kc`. When not provided, these parameters default to `1`.
!!! note
The `DE_CMC` is a quasimetric, i.e. violates symmetry. Therefore,
`colordiff(a, b, metric=DE_CMC())` may not equal to
`colordiff(b, a, metric=DE_CMC())`.
The first argument of `colordiff` is taken as the reference (standard)
color.
"""
DE_CMC()
struct DE_BFD <: DifferenceMetric
wp::XYZ{Float64}
kl::Float64
kc::Float64
DE_BFD(wp::XYZ, kl=1, kc=1) = new(wp, kl, kc)
end
"""
DE_BFD([wp,] kl=1, kc=1)
Construct a metric using the BFD equation, with weighting parameters `kl` and
`kc`. Additionally, a whitepoint `wp` can be specified, because the BFD equation
must convert between `XYZ` and `Lab` during the computation. When not provided,
`kl` and `kc` default to `1`, and `wp` defaults to CIE D65 (`Colors.WP_D65`).
"""
DE_BFD(kl=1, kc=1) = DE_BFD(WP_DEFAULT, kl, kc)
struct DE_AB <: EuclideanDifferenceMetric{Lab}
end
"""
DE_AB()
Construct a metric of the original CIE Delta E equation (ΔE*ab), or Euclidean
color difference equation in the `Lab` (CIELAB) colorspace.
"""
DE_AB()
struct DE_DIN99 <: EuclideanDifferenceMetric{DIN99}
end
"""
DE_DIN99()
Construct a metric using Euclidean color difference equation applied in the
`DIN99` colorspace.
"""
DE_DIN99()
struct DE_DIN99d <: EuclideanDifferenceMetric{DIN99d}
end
"""
DE_DIN99d()
Construct a metric using Euclidean color difference equation applied in the
`DIN99d` colorspace.
"""
DE_DIN99d()
struct DE_DIN99o <: EuclideanDifferenceMetric{DIN99o}
end
"""
DE_DIN99o()
Construct a metric using Euclidean color difference equation applied in the
`DIN99o` colorspace.
"""
DE_DIN99o()
# Color difference metrics
# ------------------------
# Evaluate the CIEDE2000 color difference formula, implemented according to:
# Klaus Witt, CIE Color Difference Metrics, Colorimetry: Understanding the CIE
# System. 2007
#
# Args:
# a, b: Any two colors.
#
# Returns:
# The CIEDE2000 color difference metric evaluated between a and b.
#
# Delta E 2000
function _colordiff(ai::Color, bi::Color, m::DE_2000)
twentyfive7 = pow7(25)
# Ensure that the input values are in L*a*b* space
a_Lab = convert(Lab, ai)
b_Lab = convert(Lab, bi)
# Calculate some necessary factors from the L*a*b* values
mc = (chroma(a_Lab) + chroma(b_Lab))/2
g = (1 - sqrt(pow7(mc) / (pow7(mc) + twentyfive7))) / 2
a_Lab_r = Lab(a_Lab.l, a_Lab.a * (1 + g), a_Lab.b)
b_Lab_r = Lab(b_Lab.l, b_Lab.a * (1 + g), b_Lab.b)
# Convert to L*C*h, where the remainder of the calculations are performed
a = convert(LCHab, a_Lab_r)
b = convert(LCHab, b_Lab_r)
# Calculate the delta values for each channel
dl, dc, dh = b.l - a.l, b.c - a.c, delta_h(b_Lab_r, a_Lab_r)
# Calculate mean L*, C* and hue values
ml, mc, mh = (a.l + b.l) / 2, (a.c + b.c) / 2, mean_hue(a, b)
# lightness weight
mls = (ml - 50)^2
sl = 1.0 + 0.015 * mls / sqrt(20 + mls)
# chroma weight
sc = 1 + 0.045mc
# hue weight
t = 1 - 0.17 * cosd(mh - 30) +
0.24 * cosd(2mh) +
0.32 * cosd(3mh + 6) -
0.20 * cosd(4mh - 63)
sh = 1 + 0.015 * mc * t
# rotation term
dtheta = 60 * exp(-((mh - 275)/25)^2)
cr = 2 * sqrt(pow7(mc) / (pow7(mc) + twentyfive7))
tr = -sind(dtheta) * cr
# Final calculation
sqrt((dl/(m.kl*sl))^2 + (dc/(m.kc*sc))^2 + (dh/(m.kh*sh))^2 +
tr * (dc/(m.kc*sc)) * (dh/(m.kh*sh)))
end
# Delta E94
function _colordiff(ai::Color, bi::Color, m::DE_94)
a = convert(LCHab, ai)
b = convert(LCHab, bi)
# Calculate the delta values for each channel
dl, dc, dh = b.l - a.l, b.c - a.c, delta_h(b, a)
# Lightness, hue, chroma correction terms
sl = 1
sc = 1 + m.k1 * a.c
sh = 1 + m.k2 * a.c
sqrt((dl/(m.kl*sl))^2 + (dc/(m.kc*sc))^2 + (dh/(m.kh*sh))^2)
end
# Metric form of jpc79 color difference equation (mostly obsolete)
function _colordiff(ai::Color, bi::Color, m::DE_JPC79)
# Convert directly into LCh
a = convert(LCHab, ai)
b = convert(LCHab, bi)
# Calculate deltas in each direction
dl, dc, dh = b.l - a.l, b.c - a.c, delta_h(b, a)
# Calculate mean lightness, chroma and hue
ml, mc, mh = (a.l + b.l) / 2, (a.c + b.c) / 2, mean_hue(a, b)
# L* adjustment term
sl = 0.08195*ml/(1+0.01765*ml)
# C* adjustment term
sc = 0.638+(0.0638*mc/(1+0.0131*mc))
# H* adjustment term
if (mc < 0.38)
sh = sc
elseif (mh >= 164 && mh <= 345)
sh = sc*(0.56+abs(0.2*cosd(mh+168)))
else
sh = sc*(0.38+abs(0.4*cosd(mh+35)))
end
# Calculate the final difference
sqrt((dl/sl)^2 + (dc/sc)^2 + (dh/sh)^2)
end
# Metric form of the cmc color difference
function _colordiff(ai::Color, bi::Color, m::DE_CMC)
# Convert directly into LCh
a = convert(LCHab, ai)
b = convert(LCHab, bi)
# Calculate deltas in each direction
dl, dc, dh = b.l - a.l, b.c - a.c, delta_h(b, a)
# L* adjustment term
if (a.l <= 16)
sl = 0.511
else
sl = 0.040975 * a.l / (1 + 0.01765 * a.l)
end
# C* adjustment term
sc = 0.0638 * a.c / (1 + 0.0131 * a.c) + 0.638
f = sqrt(a.c^4 / (a.c^4 + 1900))
if 164 <= a.h <= 345
t = 0.56 + abs(0.2 * cosd(a.h + 168))
else
t = 0.36 + abs(0.4 * cosd(a.h + 35))
end
# H* adjustment term
sh = sc*(t*f+1-f)
# Calculate the final difference
sqrt((dl/(m.kl*sl))^2 + (dc/(m.kc*sc))^2 + (dh/sh)^2)
end
# The BFD color difference equation
function _colordiff(ai::Color, bi::Color, m::DE_BFD)
# Currently, support for the `wp` argument of `convert` is limited.
function to_xyz(c::Color, wp)
c isa XYZ && return c
(c isa xyY || c isa LMS) && return convert(XYZ, c)
(c isa Lab || c isa Luv) && return convert(XYZ, c, wp)
c isa LCHuv && return convert(XYZ, convert(Luv, c), wp)
convert(XYZ, convert(Lab, c), wp)
end
# We have to start back in XYZ because BFD uses a different L equation
a_XYZ = to_xyz(ai, m.wp)
b_XYZ = to_xyz(bi, m.wp)
la = 54.6*log10(a_XYZ.y+1.5)-9.6
lb = 54.6*log10(b_XYZ.y+1.5)-9.6
# Convert into LCh with the proper white point
a_Lab = convert(Lab, a_XYZ, m.wp)
b_Lab = convert(Lab, b_XYZ, m.wp)
# Substitute in the different L values into the L*C*h values
a = LCHab(la, chroma(a_Lab), hue(a_Lab))
b = LCHab(lb, chroma(b_Lab), hue(b_Lab))
# Calculate deltas in each direction
dl, dc, dh = b.l - a.l, b.c - a.c, delta_h(b, a)
# Find the mean value of the inputs to use as the "standard"
ml, mc, mh = (a.l + b.l) / 2, (a.c + b.c) / 2, mean_hue(a, b)
# Correction terms for a variety of nonlinearities in CIELAB.
g = sqrt(mc^4/(mc^4 + 14000))
t = 0.627 + 0.055 * cosd( mh - 245) -
0.040 * cosd(2mh - 136) +
0.070 * cosd(3mh - 32) +
0.049 * cosd(4mh + 114) -
0.015 * cosd(5mh + 103)
rc = sqrt(mc^6/(mc^6 + 7e7))
rh = -0.260 * cosd( mh - 308) -
0.379 * cosd(2mh - 160) -
0.636 * cosd(3mh - 254) +
0.226 * cosd(4mh + 140) -
0.194 * cosd(5mh + 280)
dcc = 0.035*mc/(1+0.00365*mc) + 0.521
dhh = dcc*(g*t+1-g)
rt = rc*rh
# Final calculation
sqrt((dl/m.kl)^2 + (dc/(m.kc*dcc))^2 + (dh/dhh)^2 + rt*((dc*dh)/(dcc*dhh)))
end
function _colordiff(ai::Color, bi::Color,
m::EuclideanDifferenceMetric{T}) where {T <: Color3}
a, b = convert(T, ai), convert(T, bi)
d1, d2, d3 = comp1(a) - comp1(b), comp2(a) - comp2(b), comp3(a) - comp3(b)
sqrt(d1^2 + d2^2 + d3^2)
end
# Default to Delta E 2000
"""
colordiff(a, b; metric=DE_2000())
Compute an approximate measure of the perceptual difference between colors `a`
and `b`. Optionally, a `metric` may be supplied, chosen among [`DE_2000`](@ref)
(the default), [`DE_94`](@ref), [`DE_JPC79`](@ref), [`DE_CMC`](@ref),
[`DE_BFD`](@ref), [`DE_AB`](@ref), [`DE_DIN99`](@ref), [`DE_DIN99d`](@ref) and
[`DE_DIN99o`](@ref).
The return value is a non-negative number in a type depending on the colors and
metric.
!!! note
The supported metrics measure the difference within `Lab` or its variant
colorspaces. When the input colors are not in the colorspace internally used
by the metric, the colors (e.g. in `RGB`) are converted with the default
whitepoint CIE D65 (`Colors.WP_D65`). If you want to use another whitepoint,
convert the colors into the colorspace used by metric (e.g. `Lab` for
[`DE_2000`](@ref)) in advance.
"""
colordiff(ai::Union{Number, Color},
bi::Union{Number, Color};
metric::DifferenceMetric=DE_2000()) = _colordiff(ai, bi, metric)
@deprecate colordiff(ai::Color, bi::Color, metric::DifferenceMetric) colordiff(ai, bi; metric=metric)
function colordiff(ai::Colorant, bi::Colorant; metric::DifferenceMetric=DE_2000())
alpha(ai) == 1 && alpha(bi) == 1 && return _colordiff(color(ai), color(bi), metric)
throw(ArgumentError("""
cannot evaluate the difference in transparent colors.
Their appearance depends on the backdrop."""))
end
_colordiff(ai::AbstractGray, bi::Number, metric::DifferenceMetric) = _colordiff(ai, Gray(bi), metric)
_colordiff(ai::Number, bi::AbstractGray, metric::DifferenceMetric) = _colordiff(Gray(ai), bi, metric)
_colordiff(ai::Number, bi::Number, metric::DifferenceMetric) = _colordiff(Gray(ai), Gray(bi), metric)