Commits: JuliaLang/julia@e4556876102a5c96bb04543ab352d84ec339ab4e vs JuliaLang/julia@53bb7fb5df7ba6e93851631e07ad038f02b07372
Comparison Diff: link
Triggered By: link
Tag Predicate: "inference"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["inference", "abstract interpretation", "abstract_call_gf_by_type"] |
1.08 (5%) ❌ | 1.01 (1%) ❌ |
["inference", "abstract interpretation", "construct_ssa!"] |
1.06 (5%) ❌ | 1.00 (1%) |
["inference", "abstract interpretation", "domsort_ssa!"] |
1.05 (5%) ❌ | 1.01 (1%) ❌ |
["inference", "abstract interpretation", "sin(42)"] |
1.09 (5%) ❌ | 1.01 (1%) |
["inference", "allinference", "abstract_call_gf_by_type"] |
1.06 (5%) ❌ | 1.03 (1%) ❌ |
["inference", "allinference", "construct_ssa!"] |
1.05 (5%) ❌ | 1.03 (1%) ❌ |
["inference", "optimization", "abstract_call_gf_by_type"] |
1.05 (5%) ❌ | 1.05 (1%) ❌ |
["inference", "optimization", "construct_ssa!"] |
1.03 (5%) | 1.05 (1%) ❌ |
Here's a list of all the benchmark groups executed by this job:
["inference", "abstract interpretation"]
["inference", "allinference"]
["inference", "optimization"]
Julia Version 1.9.0-DEV.1244
Commit e455687610 (2022-08-31 22:03 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.4 LTS
uname: Linux 5.4.0-122-generic #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3760 MHz 36976 s 73 s 11439 s 19019306 s 0 s
#2 3520 MHz 1146763 s 34 s 47541 s 17886368 s 0 s
#3 3622 MHz 40743 s 25 s 9576 s 19029095 s 0 s
#4 3642 MHz 30793 s 48 s 9346 s 19027478 s 0 s
#5 3515 MHz 36311 s 22 s 9348 s 18926182 s 0 s
#6 3674 MHz 34609 s 33 s 9258 s 19031765 s 0 s
#7 3557 MHz 40817 s 63 s 9534 s 19030128 s 0 s
#8 3508 MHz 35100 s 77 s 9228 s 19028100 s 0 s
Memory: 31.320838928222656 GB (19080.2109375 MB free)
Uptime: 1.90966014e6 sec
Load Avg: 1.0 1.02 1.27
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.5 (ORCJIT, haswell)
Threads: 1 on 8 virtual cores
Julia Version 1.9.0-DEV.1242
Commit 53bb7fb5df (2022-08-31 18:42 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.4 LTS
uname: Linux 5.4.0-122-generic #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 2848 MHz 37043 s 73 s 11472 s 19031549 s 0 s
#2 3026 MHz 1157761 s 34 s 47634 s 17887655 s 0 s
#3 2762 MHz 41285 s 25 s 9593 s 19040912 s 0 s
#4 2729 MHz 30824 s 48 s 9355 s 19039805 s 0 s
#5 2985 MHz 36375 s 22 s 9357 s 18938465 s 0 s
#6 3018 MHz 35295 s 33 s 9277 s 19043439 s 0 s
#7 3100 MHz 40855 s 63 s 9543 s 19042458 s 0 s
#8 2968 MHz 35135 s 77 s 9239 s 19040432 s 0 s
Memory: 31.320838928222656 GB (19077.91796875 MB free)
Uptime: 1.91089812e6 sec
Load Avg: 1.0 1.0 1.05
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.5 (ORCJIT, haswell)
Threads: 1 on 8 virtual cores