Commits: JuliaLang/julia@1a93697ed69af22dacd786736597a41bfb4e70aa vs JuliaLang/julia@a83a0e6c6321e808be13c9513fd5b6ca8c4b9440
Comparison Diff: link
Triggered By: link
Tag Predicate: "inference"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["inference", "abstract interpretation", "abstract_call_gf_by_type"] |
1.12 (5%) ❌ | 1.04 (1%) ❌ |
["inference", "abstract interpretation", "broadcast"] |
1.07 (5%) ❌ | 1.01 (1%) |
["inference", "abstract interpretation", "construct_ssa!"] |
1.15 (5%) ❌ | 1.05 (1%) ❌ |
["inference", "abstract interpretation", "domsort_ssa!"] |
1.08 (5%) ❌ | 1.00 (1%) |
["inference", "abstract interpretation", "method_match_cache"] |
1.05 (5%) ❌ | 1.00 (1%) |
["inference", "abstract interpretation", "sin(42)"] |
1.06 (5%) ❌ | 1.01 (1%) |
["inference", "allinference", "abstract_call_gf_by_type"] |
1.07 (5%) ❌ | 1.02 (1%) ❌ |
["inference", "allinference", "construct_ssa!"] |
1.07 (5%) ❌ | 1.02 (1%) ❌ |
["inference", "optimization", "abstract_call_gf_by_type"] |
1.06 (5%) ❌ | 1.04 (1%) ❌ |
["inference", "optimization", "println(::QuoteNode)"] |
1.05 (5%) ❌ | 1.00 (1%) |
["inference", "optimization", "quadratic"] |
1.08 (5%) ❌ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["inference", "abstract interpretation"]
["inference", "allinference"]
["inference", "optimization"]
Julia Version 1.9.0-DEV.1241
Commit 1a93697ed6 (2022-08-31 14:11 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.4 LTS
uname: Linux 5.4.0-122-generic #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3186 MHz 20785 s 27 s 10359 s 18759646 s 0 s
#2 2984 MHz 337369 s 70 s 15859 s 18441660 s 0 s
#3 3215 MHz 26556 s 35 s 9704 s 18758409 s 0 s
#4 2890 MHz 21734 s 19 s 9431 s 18740232 s 0 s
#5 3392 MHz 25987 s 39 s 9736 s 18652056 s 0 s
#6 3141 MHz 29141 s 37 s 9670 s 18750146 s 0 s
#7 3093 MHz 26360 s 26 s 9893 s 18758001 s 0 s
#8 2910 MHz 25600 s 105 s 9668 s 18746242 s 0 s
Memory: 31.320838928222656 GB (21206.7265625 MB free)
Uptime: 1.88120859e6 sec
Load Avg: 1.0 1.02 1.18
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.5 (ORCJIT, haswell)
Threads: 1 on 8 virtual cores
Julia Version 1.9.0-DEV.1239
Commit a83a0e6c63 (2022-08-31 13:16 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.4 LTS
uname: Linux 5.4.0-122-generic #138-Ubuntu SMP Wed Jun 22 15:00:31 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3362 MHz 20835 s 27 s 10384 s 18771926 s 0 s
#2 3148 MHz 348170 s 70 s 15951 s 18443147 s 0 s
#3 3139 MHz 27108 s 35 s 9722 s 18770218 s 0 s
#4 3042 MHz 21813 s 19 s 9442 s 18752509 s 0 s
#5 3017 MHz 26471 s 39 s 9752 s 18663916 s 0 s
#6 2807 MHz 29202 s 37 s 9680 s 18762456 s 0 s
#7 3459 MHz 26391 s 26 s 9904 s 18770339 s 0 s
#8 3005 MHz 26006 s 105 s 9682 s 18758202 s 0 s
Memory: 31.320838928222656 GB (21213.7109375 MB free)
Uptime: 1.88244667e6 sec
Load Avg: 1.64 1.13 1.08
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-14.0.5 (ORCJIT, haswell)
Threads: 1 on 8 virtual cores