-
Notifications
You must be signed in to change notification settings - Fork 2
/
get_predictions.py
341 lines (292 loc) · 14.3 KB
/
get_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""
Script for running Chainsaw
Created by: Jude Wells 2023-04-19
User can provide any of the following as an input to get predictions:
- a single uniprot id (alphafold model will be downloaded and parsed)
- a list of uniprot ids (alphafold model will be downloaded and parsed)
- a list of pdb ids (alphafold model will be downloaded and parsed)
- a path to a directory with PDBs or MMCIF files
"""
import argparse
import csv
import hashlib
import logging
import os
import sys
import time
from pathlib import Path
from typing import List
from torch import compile as torch_compile
from src import constants, featurisers
from src.domain_assignment.util import convert_domain_dict_strings
from src.factories import pairwise_predictor
from src.models.results import PredictionResult
from src.prediction_result_file import PredictionResultsFile
from src.utils import common as common_utils
from src.utils.pymol_3d_visuals import generate_pymol_image
LOG = logging.getLogger(__name__)
OUTPUT_COLNAMES = ['chain_id', 'sequence_md5', 'nres', 'ndom', 'chopping', 'confidence', 'time_sec']
ACCEPTED_STRUCTURE_FILE_SUFFIXES = ['.pdb', '.cif']
def setup_logging():
loglevel = os.environ.get('LOGLEVEL', 'INFO').upper()
# log all messages to stderr so results can be sent to stdout
logging.basicConfig(level=loglevel,
stream=sys.stderr,
format='%(asctime)s | %(levelname)s | %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p')
def get_input_method(args):
number_of_input_methods = sum([ args.uniprot_id is not None,
args.uniprot_id_list_file is not None,
args.structure_directory is not None,
args.structure_file is not None,
args.pdb_id_list_file is not None,
args.pdb_id is not None])
if number_of_input_methods != 1:
raise ValueError('Exactly one input method must be provided')
if args.uniprot_id is not None:
return 'uniprot_id'
elif args.uniprot_id_list_file is not None:
return 'uniprot_id_list_file'
elif args.structure_directory is not None:
return 'structure_directory'
elif args.structure_file is not None:
return 'structure_file'
else:
raise ValueError('No input method provided')
def load_model(*,
model_dir: str,
remove_disordered_domain_threshold: float = 0.35,
min_ss_components: int = 2,
min_domain_length: int = 30,
post_process_domains: bool = True,):
config = common_utils.load_json(os.path.join(model_dir, "config.json"))
feature_config = common_utils.load_json(os.path.join(model_dir, "feature_config.json"))
config["learner"]["remove_disordered_domain_threshold"] = remove_disordered_domain_threshold
config["learner"]["post_process_domains"] = post_process_domains
config["learner"]["min_ss_components"] = min_ss_components
config["learner"]["min_domain_length"] = min_domain_length
config["learner"]["dist_transform_type"] = config["data"].get("dist_transform", 'min_replace_inverse')
config["learner"]["distance_denominator"] = config["data"].get("distance_denominator", None)
learner = pairwise_predictor(config["learner"], output_dir=model_dir)
learner.feature_config = feature_config
learner.load_checkpoints()
learner.eval()
try:
learner = torch_compile(learner)
except:
pass
return learner
def predict(model, pdb_path, renumber_pdbs=True, pdbchain=None) -> List[PredictionResult]:
"""
Makes the prediction and returns a list of PredictionResult objects
"""
start = time.time()
# get model structure metadata
model_structure = featurisers.get_model_structure(pdb_path)
if pdbchain is None:
LOG.warning(f"No chain specified for {pdb_path}, using first chain")
# get all the chain ids from the model structure
all_chain_ids = [c.id for c in model_structure.get_chains()]
# take the first chain id
pdbchain = all_chain_ids[0]
model_residues = featurisers.get_model_structure_residues(model_structure, chain=pdbchain)
model_res_label_by_index = { int(r.index): str(r.res_label) for r in model_residues}
model_structure_seq = "".join([r.aa for r in model_residues])
model_structure_md5 = hashlib.md5(model_structure_seq.encode('utf-8')).hexdigest()
x = featurisers.inference_time_create_features(pdb_path,
feature_config=model.feature_config,
chain=pdbchain,
renumber_pdbs=renumber_pdbs,
model_structure=model_structure,
)
A_hat, domain_dict, confidence = model.predict(x)
# Convert 0-indexed to 1-indexed to match AlphaFold indexing:
domain_dict = [{k: [r + 1 for r in v] for k, v in d.items()} for d in domain_dict]
names_str, bounds_str = convert_domain_dict_strings(domain_dict[0])
confidence = confidence[0]
if names_str == "":
names = bounds = ()
else:
names = names_str.split('|')
bounds = bounds_str.split('|')
assert len(names) == len(bounds)
class Seg:
def __init__(self, domain_id: str, start_index: int, end_index: int):
self.domain_id = domain_id
self.start_index = int(start_index)
self.end_index = int(end_index)
def res_label_of_index(self, index: int):
if index not in model_res_label_by_index:
raise ValueError(f"Index {index} not in model_res_label_by_index ({model_res_label_by_index})")
return model_res_label_by_index[int(index)]
@property
def start_label(self):
return self.res_label_of_index(self.start_index)
@property
def end_label(self):
return self.res_label_of_index(self.end_index)
class Dom:
def __init__(self, domain_id, segs: List[Seg] = None):
self.domain_id = domain_id
if segs is None:
segs = []
self.segs = segs
def add_seg(self, seg: Seg):
self.segs.append(seg)
# gather choppings into segments in domains
domains_by_domain_id = {}
for domain_id, chopping_by_index in zip(names, bounds):
if domain_id not in domains_by_domain_id:
domains_by_domain_id[domain_id] = Dom(domain_id)
start_index, end_index = chopping_by_index.split('-')
seg = Seg(domain_id, start_index, end_index)
domains_by_domain_id[domain_id].add_seg(seg)
# sort domain choppings by the start residue in first segment
domains = sorted(domains_by_domain_id.values(), key=lambda dom: dom.segs[0].start_index)
# collect domain choppings as strings
domain_choppings = []
for dom in domains:
# convert segments to strings
segs_str = [f"{seg.start_label}-{seg.end_label}" for seg in dom.segs]
segs_index_str = [f"{seg.start_index}-{seg.end_index}" for seg in dom.segs]
LOG.info(f"Segments (index to label): {segs_index_str} -> {segs_str}")
# join discontinuous segs with '_'
domain_choppings.append('_'.join(segs_str))
# join domains with ','
chopping_str = ','.join(domain_choppings)
num_domains = len(domain_choppings)
if num_domains == 0:
chopping_str = None
runtime = round(time.time() - start, 3)
result = PredictionResult(
pdb_path=pdb_path,
sequence_md5=model_structure_md5,
nres=len(model_structure_seq),
ndom=num_domains,
chopping=chopping_str,
confidence=confidence,
time_sec=runtime,
)
LOG.info(f"Runtime: {round(runtime, 3)}s")
return result
def write_csv_results(csv_writer, prediction_results: List[PredictionResult]):
"""
Render list of PredictionResult results to file pointer
"""
for res in prediction_results:
row = {
'chain_id': res.chain_id,
'sequence_md5': res.sequence_md5,
'nres': res.nres,
'ndom': res.ndom,
'chopping': res.chopping if res.chopping is not None else 'NULL',
'confidence': f'{res.confidence:.3g}' if res.confidence is not None else 'NULL',
'time_sec': f'{res.time_sec}' if res.time_sec is not None else 'NULL',
}
csv_writer.writerow(row)
def get_csv_writer(file_pointer):
csv_writer = csv.DictWriter(file_pointer,
fieldnames=OUTPUT_COLNAMES,
delimiter='\t')
return csv_writer
def main(args):
outer_save_dir = args.save_dir
if args.use_first_chain:
# use the first chain in the PDB file
pdb_chain_id = None
else:
pdb_chain_id = 'A'
input_method = get_input_method(args)
model = load_model(
model_dir=args.model_dir,
remove_disordered_domain_threshold=args.remove_disordered_domain_threshold,
min_ss_components=args.min_ss_components,
min_domain_length=args.min_domain_length,
post_process_domains=args.post_process_domains,
)
os.makedirs(outer_save_dir, exist_ok=True)
output_path = Path(args.output).absolute()
prediction_results_file = PredictionResultsFile(
csv_path=output_path,
# use args.allow_append to mean allow_skip and allow_append
allow_append=args.allow_append,
allow_skip=args.allow_append,
)
if input_method == 'structure_directory':
structure_dir = args.structure_directory
for idx, fname in enumerate(os.listdir(structure_dir)):
suffix = Path(fname).suffix
LOG.debug(f"Checking file {fname} (suffix: {suffix}) ..")
if suffix not in ACCEPTED_STRUCTURE_FILE_SUFFIXES:
continue
chain_id = Path(fname).stem
result_exists = prediction_results_file.has_result_for_chain_id(chain_id)
if result_exists:
LOG.info(f"Skipping file {fname} (result for '{chain_id}' already exists)")
continue
pdb_path = os.path.join(structure_dir, fname)
LOG.info(f"Making prediction for file {fname} (chain '{chain_id}')")
result = predict(model, pdb_path, pdbchain=pdb_chain_id, renumber_pdbs=args.renumber_pdbs)
prediction_results_file.add_result(result)
if args.pymol_visual:
generate_pymol_image(
pdb_path=str(result.pdb_path),
chopping=result.chopping or '',
image_out_path=os.path.join(str(outer_save_dir), f'{result.pdb_path.name.replace(".pdb", "")}.png'),
path_to_script=os.path.join(str(outer_save_dir), 'image_gen.pml'),
pymol_executable=constants.PYMOL_EXE,
)
elif input_method == 'structure_file':
result = predict(model, args.structure_file, pdbchain=pdb_chain_id)
prediction_results_file.add_result(result)
if args.pymol_visual:
generate_pymol_image(
pdb_path=str(result.pdb_path),
chopping=result.chopping or '',
image_out_path=os.path.join(str(outer_save_dir), f'{result.pdb_path.name.replace(".pdb", "")}.png'),
path_to_script=os.path.join(str(outer_save_dir), 'image_gen.pml'),
pymol_executable=constants.PYMOL_EXE,
)
else:
raise NotImplementedError('Not implemented yet')
prediction_results_file.flush()
LOG.info("DONE")
def parse_args():
"""
Parse command line arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str,
default=f'{constants.REPO_ROOT}/saved_models/model_v3',
help='path to model directory must contain model.pt and config.json')
parser.add_argument('--output', '-o', type=str, required=True,
help='write results to this file')
parser.add_argument('--uniprot_id', type=str, default=None, help='single uniprot id')
parser.add_argument('--uniprot_id_list_file', type=str, default=None,
help='path to file containing uniprot ids')
parser.add_argument('--structure_directory', type=str, default=None,
help='path to directory containing PDB or MMCIF files')
parser.add_argument('--structure_file', type=str, default=None,
help='path to PDB or MMCIF files')
parser.add_argument('--append', '-a', dest='allow_append', action='store_true', default=False,
help='allow results to be appended to an existing file')
parser.add_argument('--pdb_id', type=str, default=None, help='single pdb id')
parser.add_argument('--pdb_id_list_file', type=str, default=None, help='path to file containing uniprot ids')
parser.add_argument('--save_dir', type=str, default='results', help='path where results and images will be saved')
parser.add_argument('--no_post_processing', dest='post_process_domains', action='store_false')
parser.add_argument('--remove_disordered_domain_threshold', type=float, default=0.35,
help='if the domain is less than this proportion secondary structure, it will be removed')
parser.add_argument('--min_domain_length', type=int, default=30,
help='if the domain has fewer residues than this it will be removed')
parser.add_argument('--min_ss_components', type=int, default=2,
help='if the domain has fewer than this number of distinct secondary structure components,'
'it will be removed')
parser.add_argument('--pymol_visual', dest='pymol_visual', action='store_true',
help='whether to generate pymol images')
parser.add_argument('--use_first_chain', default=True, action="store_true", help='use the first chain in the structure (rather than "A")')
parser.add_argument('--renumber_pdbs', default=False, action="store_true", help='renumber pdb files')
args = parser.parse_args()
return args
if __name__ == "__main__":
setup_logging()
main(parse_args())