forked from zougloub/libseek
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseek_bpc.py
executable file
·230 lines (181 loc) · 5.26 KB
/
seek_bpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#!/usr/bin/env python
# -*- coding: utf-8 vi:ts=4:noet
# Bad pixel correction calibration for seek thermal camera
import sys, os, re, math
import pickle
import numpy as np
import cv2
class BPC_Static(object):
"""
Perform bad-pixels calibration and correction,
assuming images have pixels in 0-1 range.
"""
def __init__(self, img):
self._img = img
self._bad_crazy = {}
def identify_crazy(self):
img = self._img
h, w = img.shape
def has_good_in_line(x1,y1,x2,y2):
beg = x1,y1
end = x2,y2
#print("Paint from %d,%d to %d,%d" % (x1,y1,x2,y2))
dx = x2 - x1
dy = y2 - y1
is_steep = abs(dy) > abs(dx)
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
swapped = False
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
swapped = True
dx = x2 - x1
dy = y2 - y1
error = int(dx / 2.0)
ystep = 1 if y1 < y2 else -1
y = y1
for x in range(x1, x2 + 1):
xp, yp = (y, x) if is_steep else (x, y)
if (xp,yp) not in (beg, end):
#print("Paint %d,%d" % (xp,yp))
if img[yp,xp] == 0:
return True
error -= abs(dy)
if error < 0:
y += ystep
error += dx
return False
# max distance to look for good pixels
max_d = math.hypot(w,h)
max_d = 10
bpc = []
for y in range(0, h):
for x in range(0, w):
if img[y,x] == 1:# and (x,y) not in self._bad_single:
bpc.append((x,y))
img_dbg = np.zeros_like(img, dtype=np.float32)
for x,y in bpc:
img_dbg[y,x] = 1
cv2.imwrite("bpc-crazy.png", img_dbg*255)
for idx_bpc, (x,y) in enumerate(sorted(bpc)):
"""
Go in every possible direction to find a contour
"""
#if idx_bpc > 10:
# break
print("[%03d/%03d] Finding recipe for bad pixel at (%d,%d)" \
% (idx_bpc+1, len(bpc), x,y))
img_dbg = np.zeros_like(img, dtype=np.float32) + 0.1
img_dbg[y,x] = 0.5
exploratory_angle_ranges = [(0,math.pi*2)]
contour = []
y0, x0 = y, x
contour = set()
last_d = 0
current_d = 1
while True:
#print("Current distance: %.3f" % (current_d))
for y in range(max(0,y0-max_d), min(h, y0+max_d)): #range(h):
for x in range(max(0,x0-max_d), min(w, x0+max_d)): #range(w):
dist = math.hypot(y-y0,x-x0)
if dist > last_d and dist <= current_d:
if img[y,x] == 0: # good pixel
"""
Draw line to current point; if we don't
encounter pixels in the countour, this
pixel is part of contour
"""
if not has_good_in_line(x0,y0,x,y):
contour.update([(x,y)])
img_dbg[y,x] = 1.0
# Found that we need to expand.. find the next distance
next_d = math.hypot(w,h)
for y in range(h):
for x in range(w):
dist = math.hypot(y-y0,x-x0)
if dist > current_d and dist < next_d:
next_d = dist
if next_d > max_d:
break
last_d = current_d
current_d = next_d
weights = []
for x, y in contour:
dist = math.hypot(y-y0,x-x0)
weight = 1.0/dist
weights.append(weight)
weights = np.array(weights)
weights /= sum(weights)
for idx_ct, (x,y) in enumerate(contour):
print("- (%03d,%03d): %f" % (x,y,weights[idx_ct]))
self._bad_crazy[x0,y0] = [ ((x-x0,y-y0), weights[idx_ct]) for idx_ct, (x,y) in enumerate(contour) ]
cv2.imwrite("bpc-%03d-%03d.png" % (x0,y0), img_dbg*255)
def correct_crazy(self, img):
for x0, y0 in self._bad_crazy:
v = 0
for (x,y), w in self._bad_crazy[x0,y0]:
v += img[y0+y,x0+x] * w
img[y0,x0] = v
def identify(self):
self.identify_crazy()
def correct(self, img):
self.correct_crazy(img)
def load(self):
with open("bad_crazy.pickle", "r") as f:
self._bad_crazy = pickle.load(f)
def save(self):
with open("bad_crazy.pickle", "w") as f:
pickle.dump(self._bad_crazy, f)
if __name__ == '__main__':
"""
Process the file that was generated from test-calib.py
"""
img = np.float32(cv2.imread("calib-bpc-dead.png", cv2.IMREAD_GRAYSCALE))/255
bpc = BPC_Static(img)
"""
bpc.identify()
bpc.save()
"""
bpc.load()
bpc_kinds = {}
for x0, y0 in bpc._bad_crazy:
print("Bad pixel %d,%d" % (x0,y0))
for idx_ct, ((x,y), w) in enumerate(bpc._bad_crazy[x0,y0]):
print(" - %3d,%3d: %f" % (x,y,w))
k = tuple(sorted(bpc._bad_crazy[x0,y0]))
bpc_kinds.setdefault(k, 0)
bpc_kinds[k] += 1
print(len(bpc_kinds))
for k, v in sorted(bpc_kinds.items(), key=lambda x:x[1], reverse=True)[:10]:
print(k, v)
"""
Store weights, kinds, and values
"""
with open("seek_bpc_2.dat", "w") as f:
def log(x):
f.write(x)
ws = []
for x0, y0 in sorted(bpc._bad_crazy, key=lambda x: (x[1], x[0])):
for ((x,y), w) in sorted(bpc._bad_crazy[x0,y0], key=lambda x: (x[0][1],x[0][0])):
if w not in ws:
ws.append(w)
ws.sort()
log("%d\n" % len(ws))
for w in ws:
log("%f\n" % (w))
log("%d\n" % len(bpc_kinds))
bpc_kinds2 = list(bpc_kinds.keys())
for cnts in bpc_kinds2:
log("%d " % (len(cnts)))
for ((x,y), w) in sorted(cnts, key=lambda x: (x[0][1],x[0][0])):
log(" %3d %3d %d" % (y,x,ws.index(w)))
log("\n")
log("%d\n" % len(bpc._bad_crazy))
for x0, y0 in sorted(bpc._bad_crazy, key=lambda x: (x[1], x[0])):
cnts = tuple(sorted(bpc._bad_crazy[x0,y0]))
log("%3d %3d %d\n" % (y0,x0, bpc_kinds2.index(cnts)))
img = np.float32(cv2.imread("frame-000.pgm"))/255
bpc.correct(img)
cv2.imwrite("frame-000-corrected-bpc.png", img*255)