-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
94 lines (82 loc) · 3.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from networks import *
from torchvision import datasets, transforms
from resnet import resnet18, resnet34, resnet50, resnet101, resnet152
#from resnet_official import resnet18, resnet34, resnet50, resnet101, resnet152
import torch.nn as nn
from cutout import Cutout
#from AutoAugment.autoaugment import CIFAR10Policy
#from fast_autoaugment.FastAutoAugment.augmentations import *
#from fast_autoaugment.FastAutoAugment.archive import arsaug_policy, autoaug_policy, autoaug_paper_cifar10, fa_reduced_cifar10, fa_reduced_svhn, fa_resnet50_rimagenet
class Augmentation(object):
def __init__(self, policies):
self.policies = policies
def __call__(self, img):
for _ in range(1):
policy = random.choice(self.policies)
for name, pr, level in policy:
if random.random() > pr:
continue
img = apply_augment(img, name, level)
return img
def get_network(name, num_classes=-1, bn_layer=nn.BatchNorm2d):
if name == 'LeNet':
return LeNet()
elif name == 'resnet18':
assert num_classes > 0
return resnet18(num_classes=num_classes, norm_layer=bn_layer)
elif name == 'resnet34':
return resnet34(num_classes=num_classes, norm_layer=bn_layer)
elif name == 'resnet50':
return resnet50(num_classes=num_classes, norm_layer=bn_layer)
elif name == 'resnet101':
return resnet101(num_classes=num_classes, norm_layer=bn_layer)
else:
raise Exception("Unkown network:", name)
def get_dataset(name):
if name == 'MNIST':
return datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), \
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), 10
elif name == 'CIFAR10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = datasets.CIFAR10(root='../data', train=True, download=True, transform=transform_train)
testset = datasets.CIFAR10(root='../data', train=False, download=True, transform=transform_test)
return trainset, testset, 10
elif name == 'CIFAR100':
mean = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
std = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
#CIFAR10Policy(),
#Augmentation(autoaug_paper_cifar10()),
transforms.ToTensor(),
transforms.Normalize(mean, std)
#Cutout(1, 8)
])
cifar100_train = datasets.CIFAR100(root='../data', train=True, download=True, transform=transform_train)
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
cifar100_test = datasets.CIFAR100(root='../data', train=False, download=True, transform=transform_test)
return cifar100_train, cifar100_test, 100
elif name == 'ImageNet':
pass
else:
raise Exception("Unkown dataset:", name)