Skip to content

Latest commit

 

History

History
executable file
·
131 lines (108 loc) · 5.95 KB

README.md

File metadata and controls

executable file
·
131 lines (108 loc) · 5.95 KB

This is a C++ implementation of CenterNet using TensorRT and CUDA. Thanks for the official implementation of CenterNet (Objects as Points)!

Dependencies:

  • Ubuntu 16.04
  • PyTorch 1.2.0 (for the compatibility of TensorRT 5 in Jetson Tx2)
  • CUDA 10.0 [required]
  • TensorRT-7.0.0.11 (for CUDA10.0) [required]
  • CUDNN (for CUDA10.0, may not be used) [required]
  • libtorch (torch c++ lib of cpu version, gpu version may conflict with the environment) [optional]
  • gtest (Google C++ testing framework) [optional]

note that

  • The TensorRT library must be consistent with the installed CUDA and CUDNN
  • TensorRT 5 does not support dynamic shape
  • TensorRT 7.0.x does not directly support the Int8 calibration with dynamic shape
  • TensorRT 7.1.x supports the Int8 calibration with dynamic shape

Plugins of TensorRT:

  • MyUpsampling: F.interpolate/ nn.nn.UpsamplingBilinear2d
  • DCN: deformable CNN

PyTorch to onnx

Clone the repo CenterNet (Objects as Points) and download the models, then modify the backbone's outputs from

return [ret]

to

if self.training:                                                                                                           
    return [ret]                                                                                                             
else:                                                                                                                       
    hm = ret['hm'].sigmoid_()                                                                                               
    hmax = nn.functional.max_pool2d(hm, (3, 3), stride=1, padding=1)                                                         
    keep = (hmax == hm).float()                                                                                             
    hm = hm * keep                                                                                                                   
    if len(self.heads) == 3: # 2D object detection                                                                           
        return hm, ret['wh'], ret['reg']                                                                                              
    elif len(self.heads) == 6: # multi_pose                                                                                 
        wh, reg, hm_hp, hps, hp_offset = ret['wh'], ret['reg'], ret['hm_hp'], ret['hps'], ret['hp_offset']                            
        hm_hp = hm_hp.sigmoid_()                                                                                             
        hm_hp_max = nn.functional.max_pool2d(hm_hp, (3, 3), stride=1, padding=1)                                            
        keep = (hm_hp_max == hm_hp).float()                                                                                
        hm_hp = hm_hp * keep                                                                                                          
        return hm, wh, reg, hps, hm_hp, hp_offset                                                                            
    else:                                                                                                                   
        #TODO                                                                                                               
        raise Exception("Not implemented!")  

For 2D object detection, modify the function process in src/lib/detectors/ctdet.py:

with torch.no_grad():
    hm, wh, reg = self.model(images)

    torch.onnx.export(self.model, images, "ctdet-resdcn18.onnx", opset_version=9, verbose=False, output_names=["hm", "wh", "reg"])
    quit()

For human pose estimation, modify the function process in src/lib/detectors/multi_pose.py:

       hm, wh, reg, hps, hm_hp, hp_offset = self.model(images)                                                               
       names=['hm', 'wh', 'reg', 'hps', 'hm_hp', 'hp_offset']                                                               
       torch.onnx.export(self.model, images, "pose.onnx", opset_version=9, \                                                 
                         verbose=False, input_names=["input"], output_names=names)  

and replace the CenterNet/src/lib/models/networks/DCNv2 with plugins_py/DCNv2.

To obtain the onnx file, run the command:

 cd CenterNet/src &&\
 python3 demo.py ctdet --arch resdcn_18 --demo xxxxx.jpg --load_model ../models/ctdet_coco_resdcn18.pth --debug 4 --exp_id 1

Build & Run:

  1. build the plugins of TensorRT:
cd onnx-tensorrt/plugin/build &&\
cmake .. &&\
make -j

you may need to explicitly specifiy the path of some libraries. To varify the correctness of plugins, set Debug mode and build with GTEST in plugin/CMakeLists.txt.

  1. build the onnx-tensorrt with this command:
cd onnx-tensorrt/build &&\
cmake .. &\
make -j

After successfully building the tool, we can convert the xxx.onnx file to serialized TensorRT engine xxxx.trt:

cd onnx-tensorrt &&\
./build/onnx2trt ctdet-resdcn18.onnx -d 16 -o ~/ctdet-resdcn18-fp16.trt
  1. build the inference code:
cd centernet-tensorrt/build &&\
cmake .. &&\
make -j

then, run this command to see the detection's result:

./build/ctdet_infer -g=0 -e=ctdet-resdcn18-fp16.trt -i=data.txt -o=det_res

For pose estimation, run the command:

./build/pose_infer -g=0 -e=xxxxx.trt -i=data.txt -o=pos_res

Analysis

  1. inference speed:

#TODO