-
Notifications
You must be signed in to change notification settings - Fork 32
/
model.py
80 lines (70 loc) · 2.39 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch.nn as nn
import torch.nn.functional as F
def get_net(name):
if name == 'MNIST':
return Net1
elif name == 'FashionMNIST':
return Net1
elif name == 'SVHN':
return Net2
elif name == 'CIFAR10':
return Net3
class Net1(nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
e1 = F.relu(self.fc1(x))
x = F.dropout(e1, training=self.training)
x = self.fc2(x)
return x, e1
def get_embedding_dim(self):
return 50
class Net2(nn.Module):
def __init__(self):
super(Net2, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3)
self.conv3 = nn.Conv2d(32, 32, kernel_size=3)
self.conv3_drop = nn.Dropout2d()
self.fc1 = nn.Linear(1152, 400)
self.fc2 = nn.Linear(400, 50)
self.fc3 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = F.relu(F.max_pool2d(self.conv3_drop(self.conv3(x)), 2))
x = x.view(-1, 1152)
x = F.relu(self.fc1(x))
e1 = F.relu(self.fc2(x))
x = F.dropout(e1, training=self.training)
x = self.fc3(x)
return x, e1
def get_embedding_dim(self):
return 50
class Net3(nn.Module):
def __init__(self):
super(Net3, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=5)
self.conv2 = nn.Conv2d(32, 32, kernel_size=5)
self.conv3 = nn.Conv2d(32, 64, kernel_size=5)
self.fc1 = nn.Linear(1024, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = F.relu(F.max_pool2d(self.conv3(x), 2))
x = x.view(-1, 1024)
e1 = F.relu(self.fc1(x))
x = F.dropout(e1, training=self.training)
x = self.fc2(x)
return x, e1
def get_embedding_dim(self):
return 50