-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathidentity.py
135 lines (117 loc) · 6.07 KB
/
identity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_metric import _BaseMetric
from .. import _timing
from .. import utils
class Identity(_BaseMetric):
"""Class which implements the ID metrics"""
@staticmethod
def get_default_config():
"""Default class config values"""
default_config = {
'THRESHOLD': 0.5, # Similarity score threshold required for a IDTP match. Default 0.5.
'PRINT_CONFIG': True, # Whether to print the config information on init. Default: False.
}
return default_config
def __init__(self, config=None):
super().__init__()
self.integer_fields = ['IDTP', 'IDFN', 'IDFP']
self.float_fields = ['IDF1', 'IDR', 'IDP']
self.fields = self.float_fields + self.integer_fields
self.summary_fields = self.fields
# Configuration options:
self.config = utils.init_config(config, self.get_default_config(), self.get_name())
self.threshold = float(self.config['THRESHOLD'])
@_timing.time
def eval_sequence(self, data):
"""Calculates ID metrics for one sequence"""
# Initialise results
res = {}
for field in self.fields:
res[field] = 0
# Return result quickly if tracker or gt sequence is empty
if data['num_tracker_dets'] == 0:
res['IDFN'] = data['num_gt_dets']
return res
if data['num_gt_dets'] == 0:
res['IDFP'] = data['num_tracker_dets']
return res
# Variables counting global association
potential_matches_count = np.zeros((data['num_gt_ids'], data['num_tracker_ids']))
gt_id_count = np.zeros(data['num_gt_ids'])
tracker_id_count = np.zeros(data['num_tracker_ids'])
# First loop through each timestep and accumulate global track information.
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])):
# Count the potential matches between ids in each timestep
matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold)
match_idx_gt, match_idx_tracker = np.nonzero(matches_mask)
potential_matches_count[gt_ids_t[match_idx_gt], tracker_ids_t[match_idx_tracker]] += 1
# Calculate the total number of dets for each gt_id and tracker_id.
gt_id_count[gt_ids_t] += 1
tracker_id_count[tracker_ids_t] += 1
# Calculate optimal assignment cost matrix for ID metrics
num_gt_ids = data['num_gt_ids']
num_tracker_ids = data['num_tracker_ids']
fp_mat = np.zeros((num_gt_ids + num_tracker_ids, num_gt_ids + num_tracker_ids))
fn_mat = np.zeros((num_gt_ids + num_tracker_ids, num_gt_ids + num_tracker_ids))
fp_mat[num_gt_ids:, :num_tracker_ids] = 1e10
fn_mat[:num_gt_ids, num_tracker_ids:] = 1e10
for gt_id in range(num_gt_ids):
fn_mat[gt_id, :num_tracker_ids] = gt_id_count[gt_id]
fn_mat[gt_id, num_tracker_ids + gt_id] = gt_id_count[gt_id]
for tracker_id in range(num_tracker_ids):
fp_mat[:num_gt_ids, tracker_id] = tracker_id_count[tracker_id]
fp_mat[tracker_id + num_gt_ids, tracker_id] = tracker_id_count[tracker_id]
fn_mat[:num_gt_ids, :num_tracker_ids] -= potential_matches_count
fp_mat[:num_gt_ids, :num_tracker_ids] -= potential_matches_count
# Hungarian algorithm
match_rows, match_cols = linear_sum_assignment(fn_mat + fp_mat)
# Accumulate basic statistics
res['IDFN'] = fn_mat[match_rows, match_cols].sum().astype(np.int)
res['IDFP'] = fp_mat[match_rows, match_cols].sum().astype(np.int)
res['IDTP'] = (gt_id_count.sum() - res['IDFN']).astype(np.int)
# Calculate final ID scores
res = self._compute_final_fields(res)
return res
def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False):
"""Combines metrics across all classes by averaging over the class values.
If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection.
"""
res = {}
for field in self.integer_fields:
if ignore_empty_classes:
res[field] = self._combine_sum({k: v for k, v in all_res.items()
if v['IDTP'] + v['IDFN'] + v['IDFP'] > 0 + np.finfo('float').eps},
field)
else:
res[field] = self._combine_sum({k: v for k, v in all_res.items()}, field)
for field in self.float_fields:
if ignore_empty_classes:
res[field] = np.mean([v[field] for v in all_res.values()
if v['IDTP'] + v['IDFN'] + v['IDFP'] > 0 + np.finfo('float').eps], axis=0)
else:
res[field] = np.mean([v[field] for v in all_res.values()], axis=0)
return res
def combine_classes_det_averaged(self, all_res):
"""Combines metrics across all classes by averaging over the detection values"""
res = {}
for field in self.integer_fields:
res[field] = self._combine_sum(all_res, field)
res = self._compute_final_fields(res)
return res
def combine_sequences(self, all_res):
"""Combines metrics across all sequences"""
res = {}
for field in self.integer_fields:
res[field] = self._combine_sum(all_res, field)
res = self._compute_final_fields(res)
return res
@staticmethod
def _compute_final_fields(res):
"""Calculate sub-metric ('field') values which only depend on other sub-metric values.
This function is used both for both per-sequence calculation, and in combining values across sequences.
"""
res['IDR'] = res['IDTP'] / np.maximum(1.0, res['IDTP'] + res['IDFN'])
res['IDP'] = res['IDTP'] / np.maximum(1.0, res['IDTP'] + res['IDFP'])
res['IDF1'] = res['IDTP'] / np.maximum(1.0, res['IDTP'] + 0.5 * res['IDFP'] + 0.5 * res['IDFN'])
return res