-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathrun_kitti_mots.py
92 lines (84 loc) · 4.32 KB
/
run_kitti_mots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
""" run_kitti_mots.py
Run example:
run_kitti_mots.py --USE_PARALLEL False --METRICS HOTA --TRACKERS_TO_EVAL trackrcnn
Command Line Arguments: Defaults, # Comments
Eval arguments:
'USE_PARALLEL': False,
'NUM_PARALLEL_CORES': 8,
'BREAK_ON_ERROR': True,
'PRINT_RESULTS': True,
'PRINT_ONLY_COMBINED': False,
'PRINT_CONFIG': True,
'TIME_PROGRESS': True,
'OUTPUT_SUMMARY': True,
'OUTPUT_DETAILED': True,
'PLOT_CURVES': True,
Dataset arguments:
'GT_FOLDER': os.path.join(code_path, 'data/gt/kitti/kitti_mots'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/kitti/kitti_mots_val'), # Location of all
# trackers
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': ['car', 'pedestrian'], # Valid: ['car', 'pedestrian']
'SPLIT_TO_EVAL': 'val', # Valid: 'training', 'val'
'INPUT_AS_ZIP': False, # Whether tracker input files are zipped
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'SEQMAP_FOLDER': None, # Where seqmaps are found (if None, GT_FOLDER)
'SEQMAP_FILE': None, # Directly specify seqmap file (if none use seqmap_folder/split_to_eval.seqmap)
'SEQ_INFO': None, # If not None, directly specify sequences to eval and their number of timesteps
'GT_LOC_FORMAT': '{gt_folder}/instances_txt/{seq}.txt', # format of gt localization
Metric arguments:
'METRICS': ['HOTA', 'CLEAR', 'Identity']
"""
import sys
import os
import argparse
from multiprocessing import freeze_support
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import trackeval # noqa: E402
if __name__ == '__main__':
freeze_support()
# Command line interface:
default_eval_config = trackeval.Evaluator.get_default_eval_config()
default_eval_config['DISPLAY_LESS_PROGRESS'] = False
default_dataset_config = trackeval.datasets.KittiMOTS.get_default_dataset_config()
default_metrics_config = {'METRICS': ['HOTA', 'CLEAR', 'Identity']}
config = {**default_eval_config, **default_dataset_config, **default_metrics_config} # Merge default configs
parser = argparse.ArgumentParser()
for setting in config.keys():
if type(config[setting]) == list or type(config[setting]) == type(None):
parser.add_argument("--" + setting, nargs='+')
else:
parser.add_argument("--" + setting)
args = parser.parse_args().__dict__
for setting in args.keys():
if args[setting] is not None:
if type(config[setting]) == type(True):
if args[setting] == 'True':
x = True
elif args[setting] == 'False':
x = False
else:
raise Exception('Command line parameter ' + setting + 'must be True or False')
elif type(config[setting]) == type(1):
x = int(args[setting])
elif type(args[setting]) == type(None):
x = None
else:
x = args[setting]
config[setting] = x
eval_config = {k: v for k, v in config.items() if k in default_eval_config.keys()}
dataset_config = {k: v for k, v in config.items() if k in default_dataset_config.keys()}
metrics_config = {k: v for k, v in config.items() if k in default_metrics_config.keys()}
# Run code
evaluator = trackeval.Evaluator(eval_config)
dataset_list = [trackeval.datasets.KittiMOTS(dataset_config)]
metrics_list = []
for metric in [trackeval.metrics.HOTA, trackeval.metrics.CLEAR, trackeval.metrics.Identity, trackeval.metrics.JAndF]:
if metric.get_name() in metrics_config['METRICS']:
metrics_list.append(metric())
if len(metrics_list) == 0:
raise Exception('No metrics selected for evaluation')
evaluator.evaluate(dataset_list, metrics_list)