-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
579 lines (496 loc) · 21.5 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from typing import Literal
import tyro
import os
import torch
import cv2
import imageio # To generate gifs
import pycolmap_scene_manager as pycolmap
from gsplat import rasterization
from ultralytics import YOLOWorld
from sam2.build_sam import build_sam2_video_predictor
import numpy as np
def torch_to_cv(tensor):
img_cv = tensor.detach().cpu().numpy()[..., ::-1]
img_cv = np.clip(img_cv*255, 0, 255).astype(np.uint8)
return img_cv
def _detach_tensors_from_dict(d, inplace=True):
if not inplace:
d = d.copy()
for key in d:
if isinstance(d[key], torch.Tensor):
d[key] = d[key].detach()
return d
def load_checkpoint(checkpoint: str, data_dir: str, rasterizer: Literal["original", "gsplat"]="original", data_factor: int = 1):
colmap_project = pycolmap.SceneManager(f"{data_dir}/sparse/0")
colmap_project.load_cameras()
colmap_project.load_images()
colmap_project.load_points3D()
model = torch.load(checkpoint) # Make sure it is generated by 3DGS original repo
if rasterizer == "original":
model_params, _ = model
splats = {
"active_sh_degree": model_params[0],
"means": model_params[1],
"features_dc": model_params[2],
"features_rest": model_params[3],
"scaling": model_params[4],
"rotation": model_params[5],
"opacity": model_params[6].squeeze(1),
}
elif rasterizer == "gsplat":
print(model["splats"].keys())
model_params = model["splats"]
splats = {
"active_sh_degree": 3,
"means": model_params["means"],
"features_dc": model_params["sh0"],
"features_rest": model_params["shN"],
"scaling": model_params["scales"],
"rotation": model_params["quats"],
"opacity": model_params["opacities"],
}
else:
raise ValueError("Invalid rasterizer")
_detach_tensors_from_dict(splats)
# Assuming only one camera
for camera in colmap_project.cameras.values():
camera_matrix = torch.tensor(
[
[camera.fx, 0, camera.cx],
[0, camera.fy, camera.cy],
[0, 0, 1],
]
)
break
camera_matrix[:2,:3] /= data_factor
splats["camera_matrix"] = camera_matrix
splats["colmap_project"] = colmap_project
splats["colmap_dir"] = data_dir
return splats
def get_viewmat_from_colmap_image(image):
viewmat = torch.eye(4).float()#.to(device)
viewmat[:3, :3] = torch.tensor(image.R()).float()#.to(device)
viewmat[:3, 3] = torch.tensor(image.t).float()#.to(device)
return viewmat
def create_checkerboard(width, height, size=64):
checkerboard = np.zeros((height, width, 3), dtype=np.uint8)
for y in range(0, height, size):
for x in range(0, width, size):
if (x // size + y // size) % 2 == 0:
checkerboard[y:y + size, x:x + size] = 255
else:
checkerboard[y:y + size, x:x + size] = 128
return checkerboard
def render_to_dir(output_dir: str, splats, feedback: bool = False):
if feedback:
cv2.destroyAllWindows()
cv2.namedWindow("Initial Rendering", cv2.WINDOW_NORMAL)
os.makedirs(output_dir, exist_ok=True)
colmap_project = splats["colmap_project"]
frame_idx = 0
for image in sorted(colmap_project.images.values(), key=lambda x: x.name):
image_name = image.name#.split(".")[0] + ".jpg"
image_path = f"{output_dir}/{image_name}"
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = torch.cat([colors_dc, colors_rest], dim=1)
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
viewmat = get_viewmat_from_colmap_image(image)
K = splats["camera_matrix"]
output, _, info = rasterization(
means,
quats,
scales,
opacities,
colors,
viewmats=viewmat[None],
Ks=K[None],
sh_degree=3,
width=K[0, 2] * 2,
height=K[1, 2] * 2,
)
output_cv = torch_to_cv(output[0])
imageio.imsave(image_path, output_cv[:, :, ::-1])
if feedback:
cv2.imshow("Initial Rendering", output_cv)
cv2.waitKey(1)
frame_idx += 1
def prune_by_gradients(splats):
colmap_project = splats["colmap_project"]
frame_idx = 0
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = torch.cat([colors_dc, colors_rest], dim=1)
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
K = splats["camera_matrix"]
colors.requires_grad = True
gaussian_grads = torch.zeros(colors.shape[0], device=colors.device)
for image in sorted(colmap_project.images.values(), key=lambda x: x.name):
viewmat = get_viewmat_from_colmap_image(image)
output, _, _ = rasterization(
means,
quats,
scales,
opacities,
colors[:,0,:],
viewmats=viewmat[None],
Ks=K[None],
# sh_degree=3,
width=K[0, 2] * 2,
height=K[1, 2] * 2,
)
frame_idx += 1
# pseudo_loss = ((output.detach() + 1 - output)**2).mean()
pseudo_loss = output.mean()
pseudo_loss.backward()
# print(colors.grad.shape)
gaussian_grads += (colors.grad[:,0]).norm(dim=[1])
colors.grad.zero_()
mask = gaussian_grads > 0
print("Total splats", len(gaussian_grads))
print("Pruned", (~mask).sum(), "splats")
print("Remaining", mask.sum(), "splats")
splats = splats.copy()
splats["means"] = splats["means"][mask]
splats["features_dc"] = splats["features_dc"][mask]
splats["features_rest"] = splats["features_rest"][mask]
splats["scaling"] = splats["scaling"][mask]
splats["rotation"] = splats["rotation"][mask]
splats["opacity"] = splats["opacity"][mask]
return splats, mask
def test_proper_pruning(splats, splats_after_pruning):
colmap_project = splats["colmap_project"]
frame_idx = 0
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = torch.cat([colors_dc, colors_rest], dim=1)
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
means_pruned = splats_after_pruning["means"]
colors_dc_pruned = splats_after_pruning["features_dc"]
colors_rest_pruned = splats_after_pruning["features_rest"]
colors_pruned = torch.cat([colors_dc_pruned, colors_rest_pruned], dim=1)
opacities_pruned = torch.sigmoid(splats_after_pruning["opacity"])
scales_pruned = torch.exp(splats_after_pruning["scaling"])
quats_pruned = splats_after_pruning["rotation"]
K = splats["camera_matrix"]
total_error = 0
max_pixel_error = 0
for image in sorted(colmap_project.images.values(), key=lambda x: x.name):
viewmat = get_viewmat_from_colmap_image(image)
output, _, _ = rasterization(
means,
quats,
scales,
opacities,
colors,
viewmats=viewmat[None],
Ks=K[None],
sh_degree=3,
width=K[0, 2] * 2,
height=K[1, 2] * 2,
)
output_pruned, _, _ = rasterization(
means_pruned,
quats_pruned,
scales_pruned,
opacities_pruned,
colors_pruned,
viewmats=viewmat[None],
Ks=K[None],
sh_degree=3,
width=K[0, 2] * 2,
height=K[1, 2] * 2,
)
total_error += torch.abs((output - output_pruned)).sum()
max_pixel_error = max(max_pixel_error, torch.abs((output - output_pruned)).max())
percentage_pruned = (len(splats["means"]) - len(splats_after_pruning["means"])) / len(splats["means"]) * 100
assert max_pixel_error < 1 / (255*2), "Max pixel error should be less than 1/(255*2), safety margin"
print("Report {}% pruned, max pixel error = {}, total pixel error = {}".format(percentage_pruned, max_pixel_error, total_error))
def get_mask3d(splats, prompt, data_dir: str, results_dir: str, show_visual_feedback: bool = False, mask_interval: int = 1, voting_method: Literal["gradient", "binary", "projection"] = "gradient", mask_dir=None):
checkpoint = "./checkpoints/sam2_hiera_large.pt"
if not os.path.exists(checkpoint):
raise RuntimeError("Please download the checkpoint sam2_hiera_large.pt to checkpoints folder")
if show_visual_feedback:
cv2.destroyAllWindows()
cv2.namedWindow("2D Mask", cv2.WINDOW_NORMAL)
model_cfg = "sam2_hiera_l.yaml"
mask_predictor = build_sam2_video_predictor(model_cfg, checkpoint)
yolo_world = YOLOWorld("yolov8s-worldv2.pt")
yolo_world.set_classes([prompt])
colmap_project = splats["colmap_project"]
first_image_name = sorted(colmap_project.images.values(), key=lambda x: x.name)[0].name
first_image_path = f"{results_dir}/images/{first_image_name}"
frame_idx = 0
with torch.autocast("cuda", dtype=torch.bfloat16):
state = mask_predictor.init_state(f"{results_dir}/images/")
result = yolo_world(first_image_path)[0]
box = result.boxes[0].xyxy[0].tolist()
# add new prompts and instantly get the output on the same frame
_, object_ids, masks = mask_predictor.add_new_points_or_box(
state, box=box, frame_idx=0, obj_id=0
)
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = colors_dc[:,0,:] * 0 # Just to show that gradient (opacity * transmittance) is independent of color. Any value will work.
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
K = splats["camera_matrix"]
colors.requires_grad = True
gaussian_grads = torch.zeros(colors.shape[0], device=colors.device)
mask_dir = f"{results_dir}/masks_with_images"
mask_bin_dir = f"{results_dir}/masks_bin"
os.makedirs(mask_dir, exist_ok=True)
os.makedirs(mask_bin_dir, exist_ok=True)
# propagate the prompts to get masklets throughout the video
frame_idx = 0
for image, (frame_idx, object_ids, masks) in zip(
sorted(colmap_project.images.values(), key=lambda x: x.name),
mask_predictor.propagate_in_video(state),
):
image_name = image.name#.split(".")[0] + ".jpg"
# image_name = f"frame_"
image_path = f"{results_dir}/images/{image_name}"
mask_path = f"{mask_dir}/{image_name}"
mask_bin_path = f"{mask_bin_dir}/{image.name}"
frame = cv2.imread(image_path)
mask = masks[0, 0].cpu().numpy() >= 0
mask = mask.astype(float)
mask = cv2.blur(mask, (7, 7))
mask = mask > 0
mask = mask.astype(bool)
mask_red = np.zeros_like(frame)
mask_red[:, :, -1][mask] = 255
mask_bin = mask.astype(np.uint8) * 255
cv2.imwrite(mask_bin_path, mask_bin)
output = cv2.addWeighted(frame, 1, mask_red, 0.5, 0)
cv2.imwrite(mask_path, output)
frame_idx += 1
if (frame_idx % mask_interval != 1) and (mask_interval != 1):
continue
if show_visual_feedback:
cv2.imshow("2D Mask", output)
cv2.waitKey(1)
viewmat = get_viewmat_from_colmap_image(image)
width = frame.shape[1]
height = frame.shape[0]
output_for_grad, _, meta = rasterization(
means,
quats,
scales,
opacities,
colors,
viewmat[None],
K[None],
width=width,
height=height,
# sh_degree=3,
)
target = output_for_grad[0] * torch.from_numpy(mask)[..., None].cuda().float()
loss = 1 * target.mean()
loss.backward(retain_graph=True)
if voting_method == "gradient":
mins = torch.min(colors.grad, dim=-1).values
maxes = torch.max(colors.grad, dim=-1).values
assert torch.allclose(mins , maxes), "Something is wrong with gradient calculation"
gaussian_grads += (colors.grad).norm(dim=[1])
elif voting_method == "binary":
gaussian_grads += 1 * (colors.grad.norm(dim=[1]) > 0)
elif voting_method == "projection":
means2d = np.round(meta["means2d"].detach().cpu().numpy()).astype(int)
means2d_mask = (means2d[:, 0] >= 0) & (means2d[:, 0] < width) & (means2d[:, 1] >= 0) & (means2d[:, 1] < height)
means2d = means2d[means2d_mask]
gaussian_ids = meta["gaussian_ids"].detach().cpu().numpy()
gaussian_ids = gaussian_ids[means2d_mask]
means2d_mask = mask[means2d[:, 1], means2d[:, 0]] # Check if the splat is in the mask
gaussian_grads[torch.from_numpy(gaussian_ids[~means2d_mask]).long()] -= 1
gaussian_grads[torch.from_numpy(gaussian_ids[means2d_mask]).long()] += 1
else:
raise ValueError("Invalid voting method")
colors.grad.zero_()
mask_inverted = ~mask
target = output_for_grad[0] * torch.from_numpy(mask_inverted).cuda()[
..., None
]
loss = 1 * target.mean()
loss.backward(retain_graph=False)
if voting_method == "gradient":
gaussian_grads -= (colors.grad).norm(dim=[1])
elif voting_method == "binary":
gaussian_grads -= 1 * ((colors.grad).norm(dim=[1]) > 0)
elif voting_method == "projection":
pass
else:
raise ValueError("Invalid voting method")
colors.grad.zero_()
mask_3d = gaussian_grads > 0
mask_3d_inverted = gaussian_grads < 0 # We don't need Gaussians without any influence ie gaussian_grads == 0
return mask_3d, mask_3d_inverted
def apply_mask3d(splats, mask3d,mask3d_inverted, results_dir: str):
if mask3d_inverted == None:
mask3d_inverted = ~mask3d
extracted = splats.copy()
deleted = splats.copy()
masked = splats.copy()
extracted["means"] = extracted["means"][mask3d]
extracted["features_dc"] = extracted["features_dc"][mask3d]
extracted["features_rest"] = extracted["features_rest"][mask3d]
extracted["scaling"] = extracted["scaling"][mask3d]
extracted["rotation"] = extracted["rotation"][mask3d]
extracted["opacity"] = extracted["opacity"][mask3d]
deleted["means"] = deleted["means"][mask3d_inverted]
deleted["features_dc"] = deleted["features_dc"][mask3d_inverted]
deleted["features_rest"] = deleted["features_rest"][mask3d_inverted]
deleted["scaling"] = deleted["scaling"][mask3d_inverted]
deleted["rotation"] = deleted["rotation"][mask3d_inverted]
deleted["opacity"] = deleted["opacity"][mask3d_inverted]
masked["features_dc"][mask3d] = 1#(1 - 0.5) / 0.2820947917738781
masked["features_dc"][~mask3d] = 0#(0 - 0.5) / 0.2820947917738781
masked["features_rest"][~mask3d] = 0
return extracted, deleted, masked
def render_to_gif(output_path: str, splats, feedback: bool = False, use_checkerboard_background: bool = False, no_sh: bool=False):
if feedback:
cv2.destroyAllWindows()
cv2.namedWindow("Rendering", cv2.WINDOW_NORMAL)
frames = []
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = torch.cat([colors_dc, colors_rest], dim=1)
if no_sh == True:
colors = colors_dc[:,0,:]
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
K = splats["camera_matrix"]
aux_dir = output_path + ".images"
os.makedirs(aux_dir, exist_ok=True)
for image in sorted(splats["colmap_project"].images.values(), key=lambda x: x.name):
viewmat = get_viewmat_from_colmap_image(image)
output, alphas, meta = rasterization(
means,
quats,
scales,
opacities,
colors,
viewmat[None],
K[None],
width=K[0, 2]*2,
height=K[1, 2]*2,
sh_degree=3 if not no_sh else None,
)
frame = np.clip(output[0].detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)
if use_checkerboard_background:
checkerboard = create_checkerboard(frame.shape[1], frame.shape[0])
alphas = alphas[0].detach().cpu().numpy()
frame = frame * alphas + checkerboard * (1 - alphas)
frame = np.clip(frame, 0, 255).astype(np.uint8)
frames.append(frame)
if feedback:
cv2.imshow("Rendering", frame[...,::-1])
cv2.imwrite(f"{aux_dir}/{image.name}", frame[...,::-1])
cv2.waitKey(1)
imageio.mimsave(output_path, frames, fps=10)
if feedback:
cv2.destroyAllWindows()
def render_mask_pred(output_dir: str, splats, feedback: bool = False):
if feedback:
cv2.destroyAllWindows()
cv2.namedWindow("Rendering", cv2.WINDOW_NORMAL)
frames = []
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = colors_dc[:,0,:]
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
K = splats["camera_matrix"]
aux_dir = output_dir
os.makedirs(aux_dir, exist_ok=True)
for image in sorted(splats["colmap_project"].images.values(), key=lambda x: x.name):
viewmat = get_viewmat_from_colmap_image(image)
output, alphas, meta = rasterization(
means,
quats,
scales,
opacities,
colors,
viewmat[None],
K[None],
width=K[0, 2]*2,
height=K[1, 2]*2,
sh_degree=None,
)
frame = np.clip(output[0].detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)
frame = frame > 128
frame = frame.astype(np.uint8) * 255
# cv2.imshow("Checkerboard", checkerboard)
# frames.append(frame)
if feedback:
cv2.imshow("Rendering", frame[...,::-1])
cv2.imwrite(f"{aux_dir}/{image.name}", frame)
cv2.waitKey(1)
# imageio.mimsave(output_path, frames, fps=10)
if feedback:
cv2.destroyAllWindows()
def export_mask(mask3d, prune_mask, results_dir: str):
if prune_mask is not None:
mask3d_export = torch.zeros_like(prune_mask).bool()
mask3d_export[prune_mask] = mask3d
torch.save(mask3d_export, f"{results_dir}/mask3d.pth")
else:
torch.save(mask3d, f"{results_dir}/mask3d.pth")
def main(
data_dir: str = "./data/chair", # colmap path
checkpoint: str = "./data/chair/checkpoint.pth", # checkpoint path, can generate from original 3DGS repo
prompt: str = "chair", # prompt
results_dir: str = "./results/chair", # output path
show_visual_feedback: bool = True, # Will show opencv window,
rasterizer: Literal["original", "gsplat"] = "original", # Original or GSplat for checkpoints
data_factor: int = 1,
mask_interval: int = 1,
voting_method: Literal["gradient", "binary", "projection"] = "gradient",
):
"""
Demo program.
Args:
data_dir: Path to the colmap project directory
checkpoint: Path to the checkpoint file
prompt: Prompt for the mask prediction
results_dir: Path to the output directory
show_visual_feedback: Show visual feedback
rasterizer: Rasterizer used to create the checkpoint
data_factor: Factor to scale down the resolution of the images
mask_interval: The interval between images for taking masked gradients
voting_method: Voting method to generate 3D mask
"""
if not torch.cuda.is_available():
raise RuntimeError("CUDA is required for this demo")
torch.set_default_device('cuda')
os.makedirs(results_dir, exist_ok=True)
splats = load_checkpoint(checkpoint, data_dir, rasterizer=rasterizer, data_factor=data_factor)
splats_optimized, prune_mask = prune_by_gradients(splats)
test_proper_pruning(splats, splats_optimized)
del splats
splats = splats_optimized
render_to_dir(f"{results_dir}/images", splats, show_visual_feedback)
mask3d, mask3d_inverted = get_mask3d(splats, prompt, data_dir, results_dir, show_visual_feedback, mask_interval=mask_interval, voting_method=voting_method)
export_mask(mask3d, prune_mask, results_dir)
extracted, deleted, masked = apply_mask3d(splats, mask3d, mask3d_inverted, results_dir)
# render_mask_pred(f"{results_dir}/mask_bin_pred", masked, show_visual_feedback)
render_to_gif(f"{results_dir}/extracted.gif", extracted, show_visual_feedback, use_checkerboard_background=True)
render_to_gif(f"{results_dir}/deleted.gif", deleted, show_visual_feedback)
render_to_gif(f"{results_dir}/masked.gif", masked, show_visual_feedback, no_sh=True)
if __name__ == "__main__":
tyro.cli(main)