-
Notifications
You must be signed in to change notification settings - Fork 10
/
eval.py
executable file
·194 lines (162 loc) · 7.52 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import argparse
import logging
import json
import numpy as np
import os
import trimesh
import csv
import asdf
import asdf.workspace as ws
import glob
import re
def compute_chamfer_distance(chamfer_dist_file):
chamfer_distance = []
with open(chamfer_dist_file, newline='') as csvfile:
spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|')
for idx, row in enumerate(spamreader):
if idx>0:
chamfer_distance.append(float(row[-1]))
print("avg chamfer distance: ", np.mean(np.array(chamfer_distance)))
def evaluate(experiment_directory, checkpoint, data_dir, mode, specs):
with open(specs["TestSplit"], "r") as f:
split = json.load(f)
chamfer_results = []
for dataset in split:
for class_name in split[dataset]:
if mode=='recon_testset':
all_names = sorted(glob.glob(os.path.join( experiment_directory, 'Results_recon_testset', checkpoint, 'Meshes', dataset, '*.ply' )))
elif mode=='recon_testset_ttt':
all_names = sorted(glob.glob(os.path.join( experiment_directory, 'Results_recon_testset_ttt', checkpoint, 'Meshes', dataset, '*.ply' )))
elif mode=='inter_testset':
all_names = sorted(glob.glob(os.path.join( experiment_directory, 'Results_inter_testset', checkpoint, 'Meshes', dataset, '*.ply' )))
elif mode=='inter_testset_ttt':
all_names = sorted(glob.glob(os.path.join( experiment_directory, 'Results_inter_testset_ttt', checkpoint, 'Meshes', dataset, '*.ply' )))
elif mode=='generation':
all_names = sorted(glob.glob(os.path.join( experiment_directory, 'Results_generation', checkpoint, 'Meshes', dataset, '*.ply' )))
elif mode=='generation_ttt':
all_names = sorted(glob.glob(os.path.join( experiment_directory, 'Results_generation_ttt', checkpoint, 'Meshes', dataset, '*.ply' )))
logging.debug(
'Num of files to be evaluated: {}'.format(len(all_names))
)
for instance_name in all_names:
reconstructed_name = re.split('/', instance_name)[-1]
if class_name=='laptop' or class_name=='stapler' or class_name=='washing_machine' or class_name=='oven' or class_name=='door':
instance_name = reconstructed_name[:7] + reconstructed_name[-8:-4]
elif class_name=='eyeglasses' or class_name=='refrigerator':
instance_name = reconstructed_name[:7] + reconstructed_name[-12:-4]
else:
raise Exception("no such class")
logging.debug(
"evaluating " + os.path.join(dataset, class_name, reconstructed_name)
)
if mode=='recon_testset':
reconstructed_mesh_filename = ws.get_recon_testset_mesh_filename(
experiment_directory, checkpoint, dataset, class_name, instance_name
)
elif mode=='recon_testset_ttt':
reconstructed_mesh_filename = ws.get_recon_testset_ttt_mesh_filename(
experiment_directory, checkpoint, dataset, class_name, instance_name
)
elif mode=='inter_testset':
reconstructed_mesh_filename = ws.get_inter_testset_mesh_filename(
experiment_directory, checkpoint, dataset, class_name, reconstructed_name[:-4]
)
elif mode=='generation':
reconstructed_mesh_filename = ws.get_generation_mesh_filename(
experiment_directory, checkpoint, dataset, class_name, reconstructed_name[:-4]
)
elif mode=='generation_ttt':
reconstructed_mesh_filename = ws.get_generation_ttt_mesh_filename(
experiment_directory, checkpoint, dataset, class_name, reconstructed_name[:-4]
)
logging.debug(
'reconstructed mesh is "' + reconstructed_mesh_filename + '"'
)
ground_truth_samples_filename = os.path.join(
data_dir,
"SurfaceSamples",
dataset,
class_name,
instance_name + ".obj",
)
logging.debug(
"ground truth samples are " + ground_truth_samples_filename
)
normalization_params_filename = os.path.join(
data_dir,
"NormalizationParameters",
dataset,
class_name,
instance_name + ".npz",
)
logging.debug(
"normalization params are " + ground_truth_samples_filename
)
ground_truth_points = trimesh.load(ground_truth_samples_filename)
reconstruction = trimesh.load(reconstructed_mesh_filename)
normalization_params = np.load(normalization_params_filename)
chamfer_dist = asdf.metrics.chamfer.compute_trimesh_chamfer(
ground_truth_points,
reconstruction,
normalization_params["offset"],
normalization_params["scale"],
)
logging.debug("chamfer distance: " + str(chamfer_dist))
chamfer_results.append(
(os.path.join(dataset, class_name, instance_name), chamfer_dist)
)
chamfer_dist_file = os.path.join(ws.get_evaluation_dir(experiment_directory+'/Evaluation_with_Latent/', checkpoint, True), "chamfer.csv")
with open(os.path.join(chamfer_dist_file),"w") as f:
f.write("shape, chamfer_dist\n")
for result in chamfer_results:
f.write("{}, {}\n".format(result[0], result[1]))
return chamfer_dist_file
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(description="Evaluate a DeepSDF autodecoder")
arg_parser.add_argument(
"--experiment",
"-e",
dest="experiment_directory",
required=True,
help="The experiment directory. This directory should include experiment specifications in "
+ '"specs.json", and logging will be done in this directory as well.',
)
arg_parser.add_argument(
"--checkpoint",
"-c",
dest="checkpoint",
default="latest",
help="The checkpoint to test.",
)
arg_parser.add_argument(
"--data",
"-d",
dest="data_source",
default="data",
help="The data source directory.",
)
arg_parser.add_argument(
"--mode",
"-m",
required=True,
help="choose from recon_testset | inter_testset | genration",
)
asdf.add_common_args(arg_parser)
args = arg_parser.parse_args()
asdf.configure_logging(args)
specs_filename = os.path.join(args.experiment_directory, "specs.json")
if not os.path.isfile(specs_filename):
raise Exception(
'The experiment directory does not include specifications file "specs.json"'
)
specs = json.load(open(specs_filename))
chamfer_dist_file = evaluate(
args.experiment_directory,
args.checkpoint,
args.data_source,
args.mode,
specs,
)
compute_chamfer_distance(chamfer_dist_file)