-
Notifications
You must be signed in to change notification settings - Fork 4
/
PFNet_train_test.py
514 lines (411 loc) · 17.8 KB
/
PFNet_train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Copyright (C) 2018 Jingyun Liang et al.
# All rights reserved.
import argparse
import os
import shutil
import time
import sys
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import math
import pprint
import numbers
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.models as models
import torch.nn.functional as F
# dataset preparation, self-defined transforms with rois and spp layer
from lib.car_multilable_rois import ImageFolder as car_multi
import lib.transforms_with_rois as transforms
from lib.layer_utils.roi_pooling.roi_pool import RoIPoolFunction
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR', default='none',
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: vgg19)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10, no internel ouput: 0)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str,
help='distributed backend')
parser.add_argument('--input-crop', default=224, type=int,
help='input image crop size (default: 224)')
parser.add_argument('--input-scale', default=256, type=int,
help='input image scale size (default: 256)')
parser.add_argument('--lr-stepsize', '--learning-rate-stepsize', default=30, type=int,
metavar='LR', help='learning rate stepsize')
parser.add_argument('--num-Classes', type=int,
help='number of dataset classes')
parser.add_argument('--maximum-Rois', dest='maximumRois', default=100, type=int,
help='maximum number of rois')
best_prec1 = 0
plot_statistic = {"train_loss":[],"test_loss":[],"train_acc1":[],"test_acc1":[]}
def main():
global args, best_prec1, modelDir, log_file, plot_statistic
args = parser.parse_args()
args.data = 'car' # dataset name: cub car aircraft
args.numClasses = 196 # cub 200 car 196 aircraft 100
args.arch = 'vgg19' # backbone CNN
args.maximumRois = 500 # number of rois
modelDir = args.data +'_'+ args.arch +'_test' # checkpoint dir
args.resume = os.path.join(modelDir, 'epoch-' + '15' + '-checkpoint.pth.tar') # 1,2,3, 0 for no resume checkpoint
args.evaluate = True
args.epochs = 20
args.batch_size = 1
args.lr = 1e-4
args.lr_stepsize = 10
args.weight_decay = 5e-4
args.workers = 2
args.print_freq = 10
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
args.distributed = args.world_size > 1
timestamp = time.strftime("%Y-%m-%d_%H-%M-%S")
log_file = modelDir + "_{}.log".format(timestamp)
if not os.path.exists(modelDir):
os.mkdir(modelDir)
shutil.copy(os.path.abspath(__file__),modelDir)
os.rename(os.path.join(modelDir,os.path.basename(__file__)),\
os.path.join(modelDir,os.path.basename(__file__))[:-3]+"_{}.py".format(timestamp))
printlog(args)
if args.distributed:
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size)
# create model
printlog("=> using imagenet pre-trained model '{}'".format(args.arch))
if 'vgg' in args.arch :
model = models.__dict__[args.arch](pretrained=True)
model.classifier._modules['6'] = nn.Linear(model.classifier[6].in_features, args.numClasses)
model = VggBasedNet_PFNet(originalModel = model)
else:
raise ValueError
printlog(model)
if not args.distributed:
model = torch.nn.DataParallel(model.cuda())
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
# define optimizer
params = []
if 'vgg' in args.arch :
for key, value in dict(model.named_parameters()).items():
if value.requires_grad:
if 'features' in key or 'conv5' in key:
smaller_lr = 0.1
else:
smaller_lr = 1
if 'bias' in key:
params += [{'params':[value],'lr':args.lr*smaller_lr, 'weight_decay': False and args.weight_decay or 0}]
else:
params += [{'params':[value],'lr':args.lr*smaller_lr, 'weight_decay': args.weight_decay}]
else:
printlog('layer --{0}-- is fixed.'.format(key))
optimizer = torch.optim.SGD(params, momentum=args.momentum)
else:
raise ValueError
# optionally resume from a checkpoint
if args.resume :
printlog("=> loading specified checkpoint '{}'".format(args.resume))
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
plot_statistic = checkpoint['loss_acc1']
printlog("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
printlog("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# prepare data
train_loader,val_loader,train_sampler = get_data_loader()
# define loss
criterion = [BinaryLogLoss().cuda(), PartAttentionLoss().cuda()]
# model testing
if args.evaluate:
validate(val_loader, model, criterion)
return
# model training
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch)
# train
train(train_loader, model, criterion, optimizer, epoch)
# test
prec1 = validate(val_loader, model, criterion)
# save checkpoint
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
'loss_acc1':plot_statistic,
})
showPlot(plot_statistic)
printlog('Training done, the best test_acc1 is {0} in Epoch {1}'.format(best_prec1,plot_statistic["test_acc1"].index(best_prec1)))
def train(train_loader, model, criterion, optimizer, epoch):
"""model training"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.train()
end = time.time()
for i, (inputs, target) in enumerate(train_loader):
data_time.update(time.time() - end)
input = inputs[0].cuda() # image tensor
rois = inputs[1][0,:,:].cuda() # rois matrix
target = target.cuda()
input_var = torch.autograd.Variable(input)
rois_var = torch.autograd.Variable(rois)
target_var = torch.autograd.Variable(target)
# forward
output,softMatrix = model(input_var, rois_var)
loss = criterion[0](output, target_var)+criterion[1](softMatrix, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.print_freq:
if i % args.print_freq == 0:
printlog('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec_1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
printlog('Epoch {0} \t\t\t Model {1} \t Time {2}'.format(epoch, modelDir,time.strftime("%H-%M-%S")))
printlog('Train Loss {loss.avg:.4f} top1 {top1.avg:.3f} BatchTime{batch_time.avg:.3f}'
.format(loss = losses, top1=top1, batch_time=batch_time))
plot_statistic["train_loss"].append(losses.avg)
plot_statistic["train_acc1"].append(top1.avg)
def validate(val_loader, model, criterion):
"""model testing"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (inputs, target) in enumerate(val_loader):
input = inputs[0].cuda()
rois = inputs[1][0,:,:].cuda()
target = target.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
rois_var = torch.autograd.Variable(rois, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output,softMatrix = model(input_var, rois_var)
loss = criterion[0](output, target_var)+criterion[1](softMatrix, target_var)#+criterion[2](sparseSoftMatrix)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.print_freq:
if i % args.print_freq == 0:
printlog('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec_1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
printlog('Test Loss {loss.avg:.4f} top1 {top1.avg:.3f} BatchTime{batch_time.avg:.3f}'
.format(loss = losses, top1=top1, batch_time=batch_time))
plot_statistic["test_loss"].append(losses.avg)
plot_statistic["test_acc1"].append(top1.avg)
showPlot(plot_statistic)
return top1.avg
def save_checkpoint(state):
"""save checkpoint"""
filename = os.path.join(modelDir, 'epoch-' + str(state['epoch']) + '-checkpoint.pth.tar')
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // args.lr_stepsize))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
_, index = torch.max(target,dim=1)
target = index
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def printlog(output):
"""print log on screen and save to .log file"""
print(output)
stdout_backup = sys.stdout
logfile = open(os.path.join(modelDir,log_file),'a')
sys.stdout = logfile
pprint.pprint(output)
logfile.close()
sys.stdout = stdout_backup
def showPlot(plot_statistic):
"""plot loss and accuracy"""
plt.clf()
plt1 = plt.subplot(121)
plt2 = plt.subplot(122)
loc = ticker.MultipleLocator(base=10)
plt1.xaxis.set_major_locator(loc)
plt2.xaxis.set_major_locator(loc)
plt1.plot(plot_statistic["train_loss"],label="train_loss")
plt2.plot(plot_statistic["train_acc1"],label="train_acc1")
plt1.plot(plot_statistic["test_loss"],label="test_loss")
plt2.plot(plot_statistic["test_acc1"],label="test_acc1")
plt1.legend()
plt2.legend()
plt.savefig(os.path.join(modelDir,'loss_acc1.png'))
def get_data_loader():
"""Data loading code"""
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transforms = transforms.Compose([
transforms.Scale(args.input_crop,scaleheight=[250,350,450,550,650]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
val_transforms = transforms.Compose([
transforms.Scale(args.input_crop,scaleheight=[250,350,450,550,650]),#79.75% for above test
transforms.ToTensor(),
normalize,
])
if args.data == 'car':
train_dataset = car_multi(args.data, 'trainval',transform=train_transforms)
val_dataset = car_multi(args.data, 'test',transform=val_transforms)
else:
raise ValueError
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_transforms)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
return train_loader,val_loader,train_sampler
class VggBasedNet_PFNet(nn.Module):
"""model structure of PFNet"""
def __init__(self, originalModel):
super(VggBasedNet_PFNet, self).__init__()
self.features = nn.Sequential(*list(originalModel.features)[:-1])
self.roipooling = RoIPoolFunction(7, 7, 1. / 16.)
self.classifier = originalModel.classifier
def forward(self, x, rois):
# part feature extractor
x = self.features(x)
x = self.roipooling(x, rois)
x = x.view(x.size(0), -1)
x = self.classifier(x)
# two-level loss
softMatrix = F.softmax(x, dim=1)
x = softMatrix.sum(dim=0,keepdim=True)/args.maximumRois
return x, softMatrix
class VggFtNet(nn.Module):
"""VGG fine-tuning"""
def __init__(self, originalModel):
super(VggFtNet, self).__init__()
self.features = nn.Sequential(*list(originalModel.features))
self.roipooling = RoIPoolFunction(7, 7, 1. / 16.)
self.classifier = originalModel.classifier
def forward(self, x, rois):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
class BinaryLogLoss(nn.Module):
"""image loss"""
def __init__(self):
super(BinaryLogLoss, self).__init__()
return
def forward(self, input, target):
# t = -log(c.*(X-0.5) + 0.5) ;. x is assumed to be the
# probability that the attribute is active (c=+1). Hence x must be
# a number in the range [0,1]. This is the binary version of the`log` loss.
return -(target.mul(input*0.9999+1e-5 -0.5)+0.5).log().sum()
class PartAttentionLoss(nn.Module):
"""part attention loss"""
def __init__(self):
super(PartAttentionLoss, self).__init__()
self.lamda = 1
return
def forward(self, softMatrix, target):
p_t = (target.mul(softMatrix-0.5)+0.5)*0.9999+1e-5
return -(p_t).log().mul(\
torch.pow(1-p_t,self.lamda)).sum()/softMatrix.size(0)*5
if __name__ == '__main__':
main()