-
Notifications
You must be signed in to change notification settings - Fork 36
/
jParticleSwarmOptimization.m
103 lines (96 loc) · 2.3 KB
/
jParticleSwarmOptimization.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
%[1995]-"Particle Swarm Optimization"
%[1998]-"A modified particle swarm optimizer"
% (9/12/2020)
function PSO = jParticleSwarmOptimization(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
c1 = 2; % cognitive factor
c2 = 2; % social factor
w = 0.9; % inertia weight
Vmax = (ub - lb) / 2; % Maximum velocity
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'c1'), c1 = opts.c1; end
if isfield(opts,'c2'), c2 = opts.c2; end
if isfield(opts,'w'), w = opts.w; end
if isfield(opts,'Vmax'), Vmax = opts.Vmax; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
V = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Gbest update
if fit(i) < fitG
Xgb = X(i,:);
fitG = fit(i);
end
end
% PBest
Xpb = X;
fitP = fit;
% Pre
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iterations
while t <= max_Iter
for i = 1:N
for d = 1:dim
r1 = rand();
r2 = rand();
% Velocity update (2a)
VB = w * V(i,d) + c1 * r1 * (Xpb(i,d) - X(i,d)) + ...
c2 * r2 * (Xgb(d) - X(i,d));
% Velocity limit
VB(VB > Vmax) = Vmax; VB(VB < -Vmax) = -Vmax;
V(i,d) = VB;
% Position update (2b)
X(i,d) = X(i,d) + V(i,d);
end
% Boundary
XB = X(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
X(i,:) = XB;
% Fitness
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Pbest update
if fit(i) < fitP(i)
Xpb(i,:) = X(i,:);
fitP(i) = fit(i);
end
% Gbest update
if fitP(i) < fitG
Xgb = Xpb(i,:);
fitG = fitP(i);
end
end
curve(t) = fitG;
fprintf('\nIteration %d Best (PSO)= %f',t,curve(t))
t = t + 1;
end
% Select features based on selected index
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
PSO.sf = Sf;
PSO.ff = sFeat;
PSO.nf = length(Sf);
PSO.c = curve;
PSO.f = feat;
PSO.l = label;
end