-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_eval.py
144 lines (120 loc) · 5.29 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# coding: UTF-8
# Acknowledgements:
# This project is inspired by the FastText implementation from the repository: [Chinese-Text-Classification-Pytorch](https://github.com/649453932/Chinese-Text-Classification-Pytorch).
from cgitb import text
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import metrics
import time
from utils import get_time_dif
def init_network(model, method='xavier', exclude='embedding', seed=123):
for name, w in model.named_parameters():
if exclude not in name:
if 'weight' in name:
if method == 'xavier':
nn.init.xavier_normal_(w)
elif method == 'kaiming':
nn.init.kaiming_normal_(w)
else:
nn.init.normal_(w)
elif 'bias' in name:
nn.init.constant_(w, 0)
else:
pass
def train(config, model, train_iter, dev_iter, test_iter):
start_time = time.time()
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
total_batch = 0
dev_best_loss = float('inf')
last_improve = 0
flag = False
for epoch in range(config.num_epochs):
print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
# scheduler.step()
for i, (trains, labels) in enumerate(train_iter):
s = time.time()
outputs = model(trains)
model.zero_grad()
loss = F.cross_entropy(outputs, labels)
loss.backward()
optimizer.step()
e = time.time()
#print(e-s)
if total_batch % 200 == 0:
true = labels.data.cpu()
predic = torch.max(outputs.data, 1)[1].cpu()
train_acc = metrics.accuracy_score(true, predic)
dev_acc, dev_loss = evaluate(config, model, dev_iter)
if dev_loss < dev_best_loss:
dev_best_loss = dev_loss
torch.save(model.state_dict(), config.save_path)
improve = '*'
last_improve = total_batch
else:
improve = ''
time_dif = get_time_dif(start_time)
msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}'
print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
model.train()
total_batch += 1
if total_batch - last_improve > config.require_improvement:
print("No optimization for a long time, auto-stopping...")
flag = True
break
if flag:
break
test(config, model, test_iter)
def test(config, model, test_iter):
# test
model.load_state_dict(torch.load(config.save_path))
model.eval()
#start_time = time.time()
test_acc, test_loss, test_report, test_confusion = evaluate(config, model, test_iter, test=True)
#time_dif = get_time_dif(start_time)
msg = 'Test Loss: {0:>5.2}, Test Acc: {1:>6.2%}'
print(msg.format(test_loss, test_acc))
print("Precision, Recall and 1-Score...")
print(test_report)
print("Confusion Matrix...")
print(test_confusion)
#print("Time usage:", time_dif)
def evaluate(config, model, data_iter, test=False):
model.eval()
start_time = time.time()
loss_total = 0
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
#prob = np.array([], dtype=int)
with torch.no_grad():
for texts, labels in data_iter:
outputs = model(texts)
loss = F.cross_entropy(outputs, labels)
loss_total += loss
labels = labels.data.cpu().numpy()
predic = torch.max(outputs.data, 1)[1].cpu().numpy()
predict_ = torch.softmax(outputs,dim=1)
predict_ = predict_.cpu().numpy()
labels_all = np.append(labels_all, labels)
predict_all = np.append(predict_all, predic)
"""if test == True:
f = open("/home/dl/Desktop/program/Traffic_class/TrafficisText/dataset/open_world/ROC/res_fast.csv",'a')
#f = open("/home/dl/Desktop/program/Traffic_class/TrafficisText/dataset/open_world/ROC/res_mtt.csv",'a')
for i in range(len(predict_)):
f.write(str(labels[i])+","+str(predict_[i][0])+"\n")"""
acc = metrics.accuracy_score(labels_all, predict_all)
time_dif = get_time_dif(start_time)
if test == True:
print("###",time_dif)
if test:
report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4)
confusion = metrics.confusion_matrix(labels_all, predict_all)
F1 = metrics.f1_score(labels_all, predict_all,average='macro')
f = open(config.save_res,'a')
f.write("++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \n")
f.write(report)
return acc, loss_total / len(data_iter), report, confusion #, F1
return acc, loss_total / len(data_iter)