forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
173 lines (154 loc) · 7.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import ast
import math
import argparse
from functools import partial
import numpy as np
import paddle
from paddle.static import InputSpec
from paddlenlp.data import Pad, Tuple, Stack
from paddlenlp.layers.crf import LinearChainCrfLoss, ViterbiDecoder
from paddlenlp.metrics import ChunkEvaluator
from paddlenlp.utils.log import logger
import distutils.util
from data import load_dataset, load_vocab, convert_example
from model import BiGruCrf
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--data_dir", type=str, default=None, help="The folder where the dataset is located.")
parser.add_argument("--init_checkpoint", type=str, default=None, help="Path to init model.")
parser.add_argument("--model_save_dir", type=str, default=None, help="The model will be saved in this path.")
parser.add_argument("--epochs", type=int, default=10, help="Corpus iteration num.")
parser.add_argument("--batch_size", type=int, default=300, help="The number of sequences contained in a mini-batch.")
parser.add_argument("--max_seq_len", type=int, default=64, help="Number of words of the longest seqence.")
parser.add_argument("--device", default="gpu", type=str, choices=["cpu", "gpu"] ,help="The device to select to train the model, is must be cpu/gpu.")
parser.add_argument("--base_lr", type=float, default=0.001, help="The basic learning rate that affects the entire network.")
parser.add_argument("--emb_dim", type=int, default=128, help="The dimension in which a word is embedded.")
parser.add_argument("--hidden_size", type=int, default=128, help="The number of hidden nodes in the GRU layer.")
parser.add_argument("--logging_steps", type=int, default=10, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=100, help="Save checkpoint every X updates steps.")
parser.add_argument("--do_eval", type=distutils.util.strtobool, default=True, help="To evaluate the model if True.")
# yapf: enable
@paddle.no_grad()
def evaluate(model, metric, data_loader):
model.eval()
metric.reset()
for batch in data_loader:
token_ids, length, labels = batch
preds = model(token_ids, length)
num_infer_chunks, num_label_chunks, num_correct_chunks = metric.compute(
length, preds, labels)
metric.update(num_infer_chunks.numpy(),
num_label_chunks.numpy(), num_correct_chunks.numpy())
precision, recall, f1_score = metric.accumulate()
print("eval precision: %f, recall: %f, f1: %f" %
(precision, recall, f1_score))
model.train()
def train(args):
paddle.set_device(args.device)
# Create dataset.
train_ds, test_ds = load_dataset(datafiles=(os.path.join(
args.data_dir, 'train.tsv'), os.path.join(args.data_dir, 'test.tsv')))
word_vocab = load_vocab(os.path.join(args.data_dir, 'word.dic'))
label_vocab = load_vocab(os.path.join(args.data_dir, 'tag.dic'))
# q2b.dic is used to replace DBC case to SBC case
normlize_vocab = load_vocab(os.path.join(args.data_dir, 'q2b.dic'))
trans_func = partial(
convert_example,
max_seq_len=args.max_seq_len,
word_vocab=word_vocab,
label_vocab=label_vocab,
normlize_vocab=normlize_vocab)
train_ds.map(trans_func)
test_ds.map(trans_func)
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=word_vocab.get("[PAD]", 0), dtype='int64'), # word_ids
Stack(dtype='int64'), # length
Pad(axis=0, pad_val=label_vocab.get("O", 0), dtype='int64'), # label_ids
): fn(samples)
# Create sampler for dataloader
train_sampler = paddle.io.DistributedBatchSampler(
dataset=train_ds,
batch_size=args.batch_size,
shuffle=True,
drop_last=True)
train_loader = paddle.io.DataLoader(
dataset=train_ds,
batch_sampler=train_sampler,
return_list=True,
collate_fn=batchify_fn)
test_sampler = paddle.io.BatchSampler(
dataset=test_ds,
batch_size=args.batch_size,
shuffle=False,
drop_last=False)
test_loader = paddle.io.DataLoader(
dataset=test_ds,
batch_sampler=test_sampler,
return_list=True,
collate_fn=batchify_fn)
# Define the model netword and its loss
model = BiGruCrf(args.emb_dim, args.hidden_size,
len(word_vocab), len(label_vocab))
# Prepare optimizer, loss and metric evaluator
optimizer = paddle.optimizer.Adam(
learning_rate=args.base_lr, parameters=model.parameters())
chunk_evaluator = ChunkEvaluator(label_list=label_vocab.keys(), suffix=True)
if args.init_checkpoint:
model_dict = paddle.load(args.init_checkpoint)
model.load_dict(model_dict)
# Start training
global_step = 0
last_step = args.epochs * len(train_loader)
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
reader_start = time.time()
for epoch in range(args.epochs):
for step, batch in enumerate(train_loader):
train_reader_cost += time.time() - reader_start
global_step += 1
token_ids, length, label_ids = batch
train_start = time.time()
loss = model(token_ids, length, label_ids)
avg_loss = paddle.mean(loss)
train_run_cost += time.time() - train_start
total_samples += args.batch_size
if global_step % args.logging_steps == 0:
print(
"global step %d / %d, loss: %f, avg_reader_cost: %.5f sec, avg_batch_cost: %.5f sec, avg_samples: %.5f, ips: %.5f sequences/sec"
% (global_step, last_step, avg_loss, train_reader_cost /
args.logging_steps, (train_reader_cost + train_run_cost)
/ args.logging_steps, total_samples / args.logging_steps,
total_samples / (train_reader_cost + train_run_cost)))
train_reader_cost = 0.0
train_run_cost = 0.0
total_samples = 0
avg_loss.backward()
optimizer.step()
optimizer.clear_grad()
if global_step % args.save_steps == 0 or global_step == last_step:
if paddle.distributed.get_rank() == 0:
if args.do_eval:
evaluate(model, chunk_evaluator, test_loader)
paddle.save(model.state_dict(),
os.path.join(args.model_save_dir,
"model_%d.pdparams" % global_step))
reader_start = time.time()
if __name__ == "__main__":
args = parser.parse_args()
train(args)