forked from andabi/deep-voice-conversion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train2.py
99 lines (76 loc) · 3.32 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-
#/usr/bin/python2
from __future__ import print_function
from hparams import logdir_path
import hparams as hp
from tqdm import tqdm
import tensorflow as tf
from models import Model
import convert, eval2
from data_load import get_batch
import argparse
def train(logdir1='logdir/default/train1', logdir2='logdir/default/train2', queue=True):
model = Model(mode="train2", batch_size=hp.Train2.batch_size, queue=queue)
# Loss
loss_op = model.loss_net2()
# Training Scheme
global_step = tf.Variable(0, name='global_step', trainable=False)
optimizer = tf.train.AdamOptimizer(learning_rate=hp.Train2.lr)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net2')
train_op = optimizer.minimize(loss_op, global_step=global_step, var_list=var_list)
# Summary
summ_op = summaries(loss_op)
session_conf = tf.ConfigProto(
gpu_options=tf.GPUOptions(
allow_growth=True,
per_process_gpu_memory_fraction=0.6,
),
)
# Training
with tf.Session(config=session_conf) as sess:
# Load trained model
sess.run(tf.global_variables_initializer())
model.load(sess, mode='train2', logdir=logdir1, logdir2=logdir2)
writer = tf.summary.FileWriter(logdir2, sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for epoch in range(1, hp.Train2.num_epochs + 1):
for step in tqdm(range(model.num_batch), total=model.num_batch, ncols=70, leave=False, unit='b'):
if queue:
sess.run(train_op)
else:
mfcc, spec, mel = get_batch(model.mode, model.batch_size)
sess.run(train_op, feed_dict={model.x_mfcc: mfcc, model.y_spec: spec, model.y_mel: mel})
# Write checkpoint files at every epoch
summ, gs = sess.run([summ_op, global_step])
if epoch % hp.Train2.save_per_epoch == 0:
tf.train.Saver().save(sess, '{}/epoch_{}_step_{}'.format(logdir2, epoch, gs))
# Eval at every n epochs
with tf.Graph().as_default():
eval2.eval(logdir2, queue=False)
# Convert at every n epochs
with tf.Graph().as_default():
convert.convert(logdir2, queue=False)
writer.add_summary(summ, global_step=gs)
writer.close()
coord.request_stop()
coord.join(threads)
def summaries(loss):
# for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'net/net2'):
# tf.summary.histogram(v.name, v)
tf.summary.scalar('net2/train/loss', loss)
return tf.summary.merge_all()
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('case1', type=str, help='experiment case name of train1')
parser.add_argument('case2', type=str, help='experiment case name of train2')
arguments = parser.parse_args()
return arguments
if __name__ == '__main__':
args = get_arguments()
case1, case2 = args.case1, args.case2
logdir1 = '{}/{}/train1'.format(logdir_path, case1)
logdir2 = '{}/{}/train2'.format(logdir_path, case2)
train(logdir1=logdir1, logdir2=logdir2)
print("Done")