-
Notifications
You must be signed in to change notification settings - Fork 29
/
submission.py
123 lines (94 loc) · 3.62 KB
/
submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torch.nn.functional as F
import numpy as np
import time
import math
from models import *
from PIL import Image
parser = argparse.ArgumentParser(description='PSMNet')
parser.add_argument('--KITTI', default='2015',
help='KITTI version')
parser.add_argument('--datapath', default='/media/jiaren/ImageNet/data_scene_flow_2015/testing/',
help='select model')
parser.add_argument('--loadmodel', default='./trained/pretrained_model_KITTI2015.tar',
help='loading model')
parser.add_argument('--model', default='stackhourglass',
help='select model')
parser.add_argument('--maxdisp', default=192,
help='maxium disparity')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.KITTI == '2015':
from dataloader import KITTI_submission_loader as DA
else:
from dataloader import KITTI_submission_loader2012 as DA
test_left_img, test_right_img = DA.dataloader(args.datapath)
if args.model == 'stackhourglass':
model = stackhourglass(args.maxdisp)
elif args.model == 'basic':
model = basic(args.maxdisp)
else:
print('no model')
model = nn.DataParallel(model, device_ids=[0])
model.cuda()
if args.loadmodel is not None:
state_dict = torch.load(args.loadmodel)
model.load_state_dict(state_dict['state_dict'])
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
def test(imgL,imgR):
model.eval()
if args.cuda:
imgL = imgL.cuda()
imgR = imgR.cuda()
with torch.no_grad():
output = model(imgL,imgR)
output = torch.squeeze(output).data.cpu().numpy()
return output
def main():
normal_mean_var = {'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225]}
infer_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(**normal_mean_var)])
for inx in range(len(test_left_img)):
imgL_o = Image.open(test_left_img[inx]).convert('RGB')
imgR_o = Image.open(test_right_img[inx]).convert('RGB')
imgL = infer_transform(imgL_o)
imgR = infer_transform(imgR_o)
# pad to width and hight to 16 times
if imgL.shape[1] % 16 != 0:
times = imgL.shape[1]//16
top_pad = (times+1)*16 -imgL.shape[1]
else:
top_pad = 0
if imgL.shape[2] % 16 != 0:
times = imgL.shape[2]//16
right_pad = (times+1)*16-imgL.shape[2]
else:
right_pad = 0
imgL = F.pad(imgL,(0,right_pad, top_pad,0)).unsqueeze(0)
imgR = F.pad(imgR,(0,right_pad, top_pad,0)).unsqueeze(0)
start_time = time.time()
pred_disp = test(imgL,imgR)
print('time = %.2f' %(time.time() - start_time))
if top_pad !=0 or right_pad != 0:
img = pred_disp[top_pad:,:-right_pad]
else:
img = pred_disp
img = (img*256).astype('uint16')
img = Image.fromarray(img)
img.save(test_left_img[inx].split('/')[-1])
if __name__ == '__main__':
main()