forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLasagne Neural Net + Regression
119 lines (99 loc) · 3.92 KB
/
Lasagne Neural Net + Regression
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import numpy as np
import pandas as pd
np.random.seed(1883)
import lasagne
from lasagne import layers
from lasagne.layers import ReshapeLayer
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from nolearn.lasagne import visualize
import theano.tensor as T
import theano
from lasagne.regularization import regularize_layer_params_weighted, l2, l1
from lasagne.regularization import regularize_layer_params
df=pd.read_csv('DadosTeseLogit.csv',sep=',',header=0)
y=np.array(df[[29]])
y=[item for sublist in y for item in sublist]
x=np.array(df).T
x2=[]
for i in range (0,98):
x2.append([x[18][i],x[30][i]])
target=y
target = np.array(y).astype(np.float32)
target.shape
train = np.array(x2).astype(np.float32)
test = np.array(x2).astype(np.float32)
target=target[20:98]
train=train[20:98]
test=test[0:19]
target2=target[0:19]
target=target.reshape(78,1)
def norm(x):
return (x-min(x))/(max(x)-min(x))
target=norm(target)
aa=np.array([norm(train.T[0]),norm(train.T[1])])
train=aa.T
def build_mlp(input_var):
l_in=lasagne.layers.InputLayer(shape=(78,2),input_var=input_var)
l_hid1 = lasagne.layers.DenseLayer(l_in, num_units=4,nonlinearity=lasagne.nonlinearities.sigmoid)
l_out = lasagne.layers.DenseLayer(l_hid1, num_units=1,nonlinearity=lasagne.nonlinearities.sigmoid)
return l_out
input_var = T.matrix('inputs')
target_var = T.matrix('targets')
network = build_mlp(input_var)
prediction = lasagne.layers.get_output(network,deterministic=False)
loss = lasagne.objectives.squared_error(prediction, target_var)
loss = loss.mean()
layers = {build_mlp(input_var): 0.002}
l2_penalty = regularize_layer_params_weighted(layers, l2)
loss=loss-l2_penalty
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.03, momentum=0.9)
test_prediction = lasagne.layers.get_output(network)
test_loss = lasagne.objectives.squared_error(test_prediction,target_var)
test_loss=test_loss-l2_penalty
test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),dtype=theano.config.floatX)
pred=T.eq(T.argmax(test_prediction, axis=1), target_var)
train_fn = theano.function([input_var, target_var], loss, updates=updates)
val_fn = theano.function([input_var, target_var], [test_acc])
predict = theano.function([input_var, target_var], prediction, updates=updates)
pred1=theano.function([input_var, target_var],pred)
pars = theano.function([input_var,target_var], params,updates=updates)
z=[]
for i in range(0,1200):
z.append(train_fn(train,target))
print('Epoch:',i,'## Loss=',z[-1])
print('Accuracy:',1-float(z[-1]))
#### OUTPUT
Epoch: 1169 ## Loss= 0.006011609453707933
Epoch: 1170 ## Loss= 0.00600651279091835
Epoch: 1171 ## Loss= 0.006001438479870558
Epoch: 1172 ## Loss= 0.005996381398290396
Epoch: 1173 ## Loss= 0.005991342477500439
Epoch: 1174 ## Loss= 0.005986322648823261
Epoch: 1175 ## Loss= 0.005981317721307278
Epoch: 1176 ## Loss= 0.005976332351565361
Epoch: 1177 ## Loss= 0.005971361882984638
Epoch: 1178 ## Loss= 0.005966410040855408
Epoch: 1179 ## Loss= 0.005961474496871233
Epoch: 1180 ## Loss= 0.005956560373306274
Epoch: 1181 ## Loss= 0.005951664410531521
Epoch: 1182 ## Loss= 0.005946781020611525
Epoch: 1183 ## Loss= 0.005941916722804308
Epoch: 1184 ## Loss= 0.005937070120126009
Epoch: 1185 ## Loss= 0.005932238418608904
Epoch: 1186 ## Loss= 0.00592742208391428
Epoch: 1187 ## Loss= 0.005922625306993723
Epoch: 1188 ## Loss= 0.005917845293879509
Epoch: 1189 ## Loss= 0.005913081578910351
Epoch: 1190 ## Loss= 0.005908333230763674
Epoch: 1191 ## Loss= 0.005903602112084627
Epoch: 1192 ## Loss= 0.005898888222873211
Epoch: 1193 ## Loss= 0.00589419063180685
Epoch: 1194 ## Loss= 0.005889509338885546
Epoch: 1195 ## Loss= 0.005884844344109297
Epoch: 1196 ## Loss= 0.005880196578800678
Epoch: 1197 ## Loss= 0.005875561852008104
Epoch: 1198 ## Loss= 0.005870942026376724
Epoch: 1199 ## Loss= 0.005866343155503273
Accuracy: 0.9941336568444967